Fast ML Estimation for the Mixture of Factor Analyzers via an ECM Algorithm

In this brief, we propose a fast expectation conditional maximization (ECM) algorithm for maximum-likelihood (ML) estimation of mixtures of factor analyzers (MFA). Unlike the existing expectation-maximization (EM) algorithms such as the EM in Ghahramani and Hinton, 1996, and the alternating ECM (AEC...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 19; no. 11; pp. 1956 - 1961
Main Authors Jian-Hua Zhao, Yu, P.L.H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2008
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1045-9227
1941-0093
1941-0093
DOI10.1109/TNN.2008.2003467

Cover

More Information
Summary:In this brief, we propose a fast expectation conditional maximization (ECM) algorithm for maximum-likelihood (ML) estimation of mixtures of factor analyzers (MFA). Unlike the existing expectation-maximization (EM) algorithms such as the EM in Ghahramani and Hinton, 1996, and the alternating ECM (AECM) in McLachlan and Peel, 2003, where the missing data contains component-indicator vectors as well as latent factors, the missing data in our ECM consists of component-indicator vectors only. The novelty of our algorithm is that closed-form expressions in all conditional maximization (CM) steps are obtained explicitly, instead of resorting to numerical optimization methods. As revealed by experiments, the convergence of our ECM is substantially faster than EM and AECM regardless of whether assessed by central processing unit (CPU) time or number of iterations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9227
1941-0093
1941-0093
DOI:10.1109/TNN.2008.2003467