Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach

Background: The COVID-19 pandemic has attracted the attention of researchers and clinicians whom have provided evidence about risk factors and clinical outcomes. Research on the COVID-19 pandemic benefiting from open-access data and machine learning algorithms is still scarce yet can produce relevan...

Full description

Saved in:
Bibliographic Details
Published inWellcome open research Vol. 5; p. 56
Main Authors Carrillo-Larco, Rodrigo M., Castillo-Cara, Manuel
Format Journal Article
LanguageEnglish
Published London Wellcome Trust Limited 2020
F1000 Research Limited
Wellcome
Subjects
Online AccessGet full text
ISSN2398-502X
2398-502X
DOI10.12688/wellcomeopenres.15819.3

Cover

More Information
Summary:Background: The COVID-19 pandemic has attracted the attention of researchers and clinicians whom have provided evidence about risk factors and clinical outcomes. Research on the COVID-19 pandemic benefiting from open-access data and machine learning algorithms is still scarce yet can produce relevant and pragmatic information. With country-level pre-COVID-19-pandemic variables, we aimed to cluster countries in groups with shared profiles of the COVID-19 pandemic. Methods: Unsupervised machine learning algorithms (k-means) were used to define data-driven clusters of countries; the algorithm was informed by disease prevalence estimates, metrics of air pollution, socio-economic status and health system coverage. Using the one-way ANOVA test, we compared the clusters in terms of number of confirmed COVID-19 cases, number of deaths, case fatality rate and order in which the country reported the first case. Results: The model to define the clusters was developed with 155 countries. The model with three principal component analysis parameters and five or six clusters showed the best ability to group countries in relevant sets. There was strong evidence that the model with five or six clusters could stratify countries according to the number of confirmed COVID-19 cases (p<0.001). However, the model could not stratify countries in terms of number of deaths or case fatality rate. Conclusions : A simple data-driven approach using available global information before the COVID-19 pandemic, seemed able to classify countries in terms of the number of confirmed COVID-19 cases. The model was not able to stratify countries based on COVID-19 mortality data.
Bibliography:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
No competing interests were disclosed.
RMC-L conceived the idea with support of MC-C. RMC-L pooled the data. MC-C conducted the clustering analysis. RMC-L conducted the statistical analysis. RMC-L drafted the manuscript with input from MC-C. Both authors approved the submitted version.
ISSN:2398-502X
2398-502X
DOI:10.12688/wellcomeopenres.15819.3