Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications

Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly f...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 13; no. 32; pp. 13665 - 1368
Main Authors Silvestri, Niccolò, Gavilán, Helena, Guardia, Pablo, Brescia, Rosaria, Fernandes, Soraia, Samia, Anna Cristina S, Teran, Francisco J, Pellegrino, Teresa
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 28.08.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/d1nr01044a

Cover

Abstract Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc-cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T 2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs. Mixed transition metals ferrites nanocubes are here prepared. Their magnetic properties are evaluated to assess their applicability as theranostic tools for magnetic hyperthermia treatment, magnetic resonance imaging and magnetic particles imaging.
AbstractList Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc–cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T 2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs. Mixed transition metals ferrites nanocubes are here prepared. Their magnetic properties are evaluated to assess their applicability as theranostic tools for magnetic hyperthermia treatment, magnetic resonance imaging and magnetic particles imaging.
Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc–cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T 2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs.
Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc–cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs.
Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc-cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs.Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic hyperthermia treatment (MHT) or magnetic resonance imaging (MRI) applications while their magnetic particle imaging (MPI) properties, particularly for this peculiar shape different from the conventional spherical nanoparticles (NPs), are relatively less investigated. In this work, we report on a non-hydrolytic synthesis approach to prepare mixed transition metal ferrite NCs. A series of NCs of mixed zinc-cobalt-ferrite were prepared and their magnetic theranostic properties were compared to those of cobalt ferrite or zinc ferrite NCs of similar sizes. For each of the nanomaterials, the synthesis parameters were adjusted to obtain NCs in the size range from 8 up to 15 nm. The chemical and structural nature of the different NCs was correlated to their magnetic properties. In particular, to evaluate magnetic losses, we compared the data obtained from calorimetric measurements to the data measured by dynamic magnetic hysteresis obtained under alternating magnetic field (AMF) excitation. Cobalt-ferrite and zinc-cobalt ferrite NCs showed high specific adsorption rate (SAR) values in aqueous solutions but their heating ability was drastically suppressed once in viscous media even for NCs as small as 12 nm. On the other hand, non-stoichiometric zinc-ferrite NCs showed significant but lower SAR values than the other ferrites, but these zinc-ferrite NCs preserved almost unaltered their heating trend in viscous environments. Also, the presence of zinc in the crystal lattice of zinc-cobalt ferrite NCs showed increased contrast enhancement for MRI with the highest T2 relaxation time and in the MPI signal with the best point spread function and signal-to-noise ratio in comparison to the analogue cobalt-ferrite NC. Among the different compositions investigated, non-stoichiometric zinc-ferrite NCs can be considered the most promising material as a multifunctional theranostic platform for MHT, MPI and MRI regardless of the media viscosity in which they will be applied, while ensuring the best biocompatibility with respect to the cobalt ferrite NCs.
Author Guardia, Pablo
Samia, Anna Cristina S
Gavilán, Helena
Fernandes, Soraia
Brescia, Rosaria
Silvestri, Niccolò
Pellegrino, Teresa
Teran, Francisco J
AuthorAffiliation Department of Chemistry
iMdea Nanociencia
Campus Universitario de Cantoblanco
IREC-Catalonia Institute for Energy Research
Unidad Asociada al Centro Nacional de Biotecnología (CSIC)
Istituto Italiano di Tecnologia
Case Western Reserve University
Jardins de les Dones de Negre 1
Nanobiotecnología (iMdea-Nanociencia)
AuthorAffiliation_xml – name: Istituto Italiano di Tecnologia
– name: Department of Chemistry
– name: iMdea Nanociencia
– name: Case Western Reserve University
– name: IREC-Catalonia Institute for Energy Research
– name: Jardins de les Dones de Negre 1
– name: Nanobiotecnología (iMdea-Nanociencia)
– name: Unidad Asociada al Centro Nacional de Biotecnología (CSIC)
– name: Campus Universitario de Cantoblanco
Author_xml – sequence: 1
  givenname: Niccolò
  surname: Silvestri
  fullname: Silvestri, Niccolò
– sequence: 2
  givenname: Helena
  surname: Gavilán
  fullname: Gavilán, Helena
– sequence: 3
  givenname: Pablo
  surname: Guardia
  fullname: Guardia, Pablo
– sequence: 4
  givenname: Rosaria
  surname: Brescia
  fullname: Brescia, Rosaria
– sequence: 5
  givenname: Soraia
  surname: Fernandes
  fullname: Fernandes, Soraia
– sequence: 6
  givenname: Anna Cristina S
  surname: Samia
  fullname: Samia, Anna Cristina S
– sequence: 7
  givenname: Francisco J
  surname: Teran
  fullname: Teran, Francisco J
– sequence: 8
  givenname: Teresa
  surname: Pellegrino
  fullname: Pellegrino, Teresa
BookMark eNptkl1rFTEQhoO02A-96b0Q8EaEbZNNNtl4USitWqFUEL0O2eysJ2VPsibZQgX_u9lz-oHFqwyZ530nM5MDtOODB4SOKDmmhKmTnvpIKOHcvED7NeGkYkzWO4-x4HvoIKUbQoRigr1Ee4xzKQWv99GfC1dh43uco6tsWE_F2mecJudhxAPE6DJgb3ywcwfpA053Pq8gubRVrcBFvOhMNNndArarEtkM0f0uF8HjIcQFi8UiZWexmabR2U0uvUK7gxkTvL4_D9GPTx-_n19WV18_fzk_u6osJ02ujCBGcCW7VlJLGgbQdwNnciCcKdZKy4gZQFFrFG8a0QrGWxAN65tedk0_sEN0uvWd5m4NvS0tRjPqKbq1iXc6GKf_zXi30j_DrW6Z5EKqYvDu3iCGXzOkrNcuWRhH4yHMSddNGa1UtaAFffsMvQlz9KW9hao5F61aDMmWsjGkFGHQ1uXNUEp9N2pK9LJbfUGvv212e1Yk759JHt7_X_jNFo7JPnJPH4X9BXuasf4
CitedBy_id crossref_primary_10_3390_magnetochemistry11020009
crossref_primary_10_1021_acs_chemmater_3c00432
crossref_primary_10_2217_nnm_2023_0304
crossref_primary_10_3390_catal13121473
crossref_primary_10_1039_D1NR05841J
crossref_primary_10_1039_D3NR00863K
crossref_primary_10_1021_acsanm_3c04442
crossref_primary_10_1038_s41596_022_00779_3
crossref_primary_10_1016_j_mtbio_2024_101110
crossref_primary_10_1007_s10854_022_09332_0
crossref_primary_10_3390_chemistry4030063
crossref_primary_10_1088_1361_648X_ad0191
crossref_primary_10_1016_j_jallcom_2024_174415
crossref_primary_10_1126_sciadv_ado7356
crossref_primary_10_1002_advs_202403708
crossref_primary_10_1039_D4NJ02783C
crossref_primary_10_1016_j_ceramint_2022_09_341
crossref_primary_10_1021_acsanm_4c06759
crossref_primary_10_1039_D1NR05670K
crossref_primary_10_1016_j_physb_2025_416947
crossref_primary_10_1021_acs_nanolett_2c03568
crossref_primary_10_1039_D2RA01656G
crossref_primary_10_1039_D3NR01269G
Cites_doi 10.1208/s12248-015-9780-2
10.1039/C7NR00810D
10.1063/1.1839633
10.1021/nn2048137
10.1038/srep01652
10.1039/c3tc00790a
10.1016/j.jmmm.2015.08.097
10.1021/la503930s
10.1002/adma.202003712
10.1039/C6NR01303A
10.1186/1743-8977-10-32
10.1021/la902120e
10.1039/C6NR01877G
10.1016/j.physb.2007.08.219
10.1039/c2nr30986f
10.1118/1.4810962
10.1007/s10971-017-4570-1
10.1016/j.ceramint.2012.01.001
10.1039/C8CP00843D
10.1039/b717801h
10.1016/j.ssc.2011.04.018
10.1016/j.jallcom.2012.10.105
10.1016/j.apcata.2015.11.027
10.1021/jo00146a016
10.1063/1.3681361
10.1063/1.368393
10.1016/S0273-2300(02)00020-X
10.1016/j.matchar.2010.04.013
10.1016/j.pnsc.2016.09.004
10.1016/j.poly.2009.06.061
10.1038/s41551-019-0506-0
10.1021/acsnano.9b08660
10.1016/j.jmmm.2006.10.1156
10.1021/acs.chemmater.5b04780
10.1063/1.3638695
10.1021/acsami.9b20496
10.1016/j.actbio.2012.10.037
10.1021/jp901077c
10.1016/j.jmmm.2004.09.138
10.1063/1.2185853
10.1007/978-1-60327-553-8_12
10.1021/acsami.9b17714
10.1021/ja0768744
10.1039/C5NR03096J
10.1021/ja0422155
10.1016/j.taap.2013.09.001
10.1021/ja302856z
10.1039/b801041b
10.1021/jp8029083
10.1016/j.tiv.2019.02.011
10.1038/nature03808
10.1038/s41598-018-37186-2
10.1007/s11051-019-4631-1
10.1021/acs.nanolett.9b00630
10.1186/s13578-015-0046-6
10.1021/nl301499u
10.1002/adhm.201200078
10.1007/s10118-015-1625-z
10.1039/c4tb00061g
10.1039/c2jm30684k
10.1007/s10439-010-0023-5
10.1002/adfm.200500589
10.1007/s12034-013-0439-2
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
5PM
DOI 10.1039/d1nr01044a
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2040-3372
EndPage 1368
ExternalDocumentID PMC8374679
10_1039_D1NR01044A
d1nr01044a
GrantInformation_xml – fundername: ;
  grantid: AIRC project (contract no. 14527)
– fundername: ;
  grantid: DMR-1253358
– fundername: ;
  grantid: TD1402 “RADIOMAG”
– fundername: ;
  grantid: P2018/NMT-4321
– fundername: ;
  grantid: SEV-2016-0686
– fundername: ;
  grantid: starting grant ICARO, Contract No. 678109
– fundername: ;
  grantid: ERC proof of concept (Hypercube GA899661)
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
AAPBV
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c405t-a60a6497b871c053eedbf437f0439387c30afe91ca9455686348e653d5d7b5df3
ISSN 2040-3364
2040-3372
IngestDate Thu Aug 21 18:36:24 EDT 2025
Fri Jul 11 14:01:03 EDT 2025
Mon Jun 30 06:45:01 EDT 2025
Tue Jul 01 01:14:12 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Sun May 01 04:30:37 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c405t-a60a6497b871c053eedbf437f0439387c30afe91ca9455686348e653d5d7b5df3
Notes 10.1039/d1nr01044a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current affiliation: International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic.
ORCID 0000-0003-0607-0627
0000-0001-5518-1134
0000-0002-8871-3851
0000-0002-2466-6208
0000-0001-6032-3248
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8374679
PMID 34477642
PQID 2562446899
PQPubID 2047485
PageCount 16
ParticipantIDs crossref_citationtrail_10_1039_D1NR01044A
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8374679
crossref_primary_10_1039_D1NR01044A
rsc_primary_d1nr01044a
proquest_miscellaneous_2569379261
proquest_journals_2562446899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-28
PublicationDateYYYYMMDD 2021-08-28
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-28
  day: 28
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Cristina (D1NR01044A/cit10) 2016; 26
Ammar (D1NR01044A/cit22) 2006; 18
Pardo (D1NR01044A/cit47) 2020; 12
Noh (D1NR01044A/cit17) 2012; 12
Allione (D1NR01044A/cit4) 2011; 110
Sanpo (D1NR01044A/cit34) 2013; 9
Rivero (D1NR01044A/cit67) 2019; 21
Materia (D1NR01044A/cit6) 2015; 31
Horev-Azaria (D1NR01044A/cit19) 2013; 10
Naseri (D1NR01044A/cit24) 2011; 151
Bauer (D1NR01044A/cit7) 2016; 8
Ma (D1NR01044A/cit44) 2015; 33
Wang (D1NR01044A/cit54) 2020; 14
Lee (D1NR01044A/cit15) 1998; 84
Vuong (D1NR01044A/cit60) 2012; 1
Gleich (D1NR01044A/cit52) 2005; 435
Köseoğlu (D1NR01044A/cit29) 2009; 28
Newcomb (D1NR01044A/cit63) 2009
Gilbert (D1NR01044A/cit42) 1982; 47
Abenojar (D1NR01044A/cit57) 2016; 26
Arulmurugan (D1NR01044A/cit30) 2005; 288
Mehdaoui (D1NR01044A/cit50) 2012; 100
Duan (D1NR01044A/cit61) 2008; 112
Périgo (D1NR01044A/cit8) 2015
Najafabadi (D1NR01044A/cit45) 2016; 511
Li (D1NR01044A/cit64) 2010; 38
Anselmo (D1NR01044A/cit3) 2015; 17
López-Ortega (D1NR01044A/cit48) 2012; 4
Vaidyanathan (D1NR01044A/cit33) 2008; 403
Yang (D1NR01044A/cit13) 2013; 1
Goldhaber (D1NR01044A/cit21) 2003; 38
Mameli (D1NR01044A/cit40) 2016; 8
Guardia (D1NR01044A/cit9) 2012; 6
Arami (D1NR01044A/cit56) 2013; 40
Wan (D1NR01044A/cit27) 2012; 22
Paulsen (D1NR01044A/cit32) 2005; 97
Balakrishnan (D1NR01044A/cit20) 2020; 32
Köseoğlu (D1NR01044A/cit31) 2012; 38
Bárcena (D1NR01044A/cit25) 2008
Saquib (D1NR01044A/cit68)
Song (D1NR01044A/cit53) 2020; 4
Martínez-Rodríguez (D1NR01044A/cit65) 2019; 57
Cabrera (D1NR01044A/cit18) 2017; 9
Gharibshahian (D1NR01044A/cit35) 2018; 85
Song (D1NR01044A/cit2) 2012; 134
Moyet (D1NR01044A/cit38) 2010; 61
Alhadlaq (D1NR01044A/cit66) 2015; 5
Salazar-Alvarez (D1NR01044A/cit28) 2008; 130
Ben Ali (D1NR01044A/cit36) 2016; 398
Torres (D1NR01044A/cit58) 2019; 9
Berkowitz (D1NR01044A/cit14) 1959; 30
Bao (D1NR01044A/cit46) 2010; 26
Di Corato (D1NR01044A/cit49) 2008; 18
Chinnasamy (D1NR01044A/cit23) 2000; 12
Martinez-boubeta (D1NR01044A/cit5) 2013; 3
Lak (D1NR01044A/cit43) 2019; 12
Xu (D1NR01044A/cit12) 2015; 7
Sperling (D1NR01044A/cit62) 2006; 16
Sathya (D1NR01044A/cit16) 2016; 28
Jun (D1NR01044A/cit59) 2005; 127
Guardia (D1NR01044A/cit1) 2014; 2
SINGHAL (D1NR01044A/cit37) 2013; 36
Chen (D1NR01044A/cit26) 2013; 550
Du (D1NR01044A/cit55) 2019; 19
Sathya (D1NR01044A/cit41) 2016; 28
Carta (D1NR01044A/cit11) 2009; 113
Wang (D1NR01044A/cit39) 2018; 20
Hergt (D1NR01044A/cit51) 2007; 311
References_xml – doi: Saquib Al-Khedhairy Ahmad Siddiqui Dwivedi Khan Musarrat
– issn: 2009
  end-page: 227-241
  publication-title: CNS Cancer
  doi: Newcomb Zagzag
– volume: 17
  start-page: 1041
  year: 2015
  ident: D1NR01044A/cit3
  publication-title: AAPS J.
  doi: 10.1208/s12248-015-9780-2
– volume: 9
  start-page: 5094
  year: 2017
  ident: D1NR01044A/cit18
  publication-title: Nanoscale
  doi: 10.1039/C7NR00810D
– volume: 97
  start-page: 044502
  year: 2005
  ident: D1NR01044A/cit32
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1839633
– volume: 6
  start-page: 3080
  year: 2012
  ident: D1NR01044A/cit9
  publication-title: ACS Nano
  doi: 10.1021/nn2048137
– volume: 3
  start-page: 1
  issue: 1
  year: 2013
  ident: D1NR01044A/cit5
  publication-title: Sci. Rep.
  doi: 10.1038/srep01652
– volume: 1
  start-page: 2875
  year: 2013
  ident: D1NR01044A/cit13
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc00790a
– volume: 398
  start-page: 20
  year: 2016
  ident: D1NR01044A/cit36
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2015.08.097
– volume: 31
  start-page: 808
  year: 2015
  ident: D1NR01044A/cit6
  publication-title: Langmuir
  doi: 10.1021/la503930s
– volume: 32
  start-page: 2003712
  year: 2020
  ident: D1NR01044A/cit20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003712
– volume: 18
  start-page: 9055
  year: 2006
  ident: D1NR01044A/cit22
  publication-title: J. Phys.: Condens. Matter
– volume: 8
  start-page: 10124
  year: 2016
  ident: D1NR01044A/cit40
  publication-title: Nanoscale
  doi: 10.1039/C6NR01303A
– volume: 10
  start-page: 32
  year: 2013
  ident: D1NR01044A/cit19
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/1743-8977-10-32
– volume: 26
  start-page: 478
  year: 2010
  ident: D1NR01044A/cit46
  publication-title: Langmuir
  doi: 10.1021/la902120e
– volume: 8
  start-page: 12162
  year: 2016
  ident: D1NR01044A/cit7
  publication-title: Nanoscale
  doi: 10.1039/C6NR01877G
– volume: 403
  start-page: 2157
  year: 2008
  ident: D1NR01044A/cit33
  publication-title: Physica B: Condens. Matter
  doi: 10.1016/j.physb.2007.08.219
– volume: 4
  start-page: 5138
  year: 2012
  ident: D1NR01044A/cit48
  publication-title: Nanoscale
  doi: 10.1039/c2nr30986f
– volume: 40
  start-page: 071904
  year: 2013
  ident: D1NR01044A/cit56
  publication-title: Med. Phys.
  doi: 10.1118/1.4810962
– volume: 85
  start-page: 684
  year: 2018
  ident: D1NR01044A/cit35
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-017-4570-1
– volume: 38
  start-page: 3625
  year: 2012
  ident: D1NR01044A/cit31
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.01.001
– volume: 20
  start-page: 17245
  year: 2018
  ident: D1NR01044A/cit39
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP00843D
– volume: 18
  start-page: 1991
  year: 2008
  ident: D1NR01044A/cit49
  publication-title: J. Mater. Chem.
  doi: 10.1039/b717801h
– volume: 151
  start-page: 1031
  year: 2011
  ident: D1NR01044A/cit24
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2011.04.018
– volume: 550
  start-page: 348
  year: 2013
  ident: D1NR01044A/cit26
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.10.105
– volume: 511
  start-page: 31
  year: 2016
  ident: D1NR01044A/cit45
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2015.11.027
– volume: 47
  start-page: 4899
  year: 1982
  ident: D1NR01044A/cit42
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00146a016
– volume: 100
  start-page: 052403
  issue: 5
  year: 2012
  ident: D1NR01044A/cit50
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3681361
– volume: 84
  start-page: 2801
  year: 1998
  ident: D1NR01044A/cit15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368393
– volume: 38
  start-page: 232
  year: 2003
  ident: D1NR01044A/cit21
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1016/S0273-2300(02)00020-X
– volume: 61
  start-page: 1317
  year: 2010
  ident: D1NR01044A/cit38
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2010.04.013
– volume: 26
  start-page: 440
  year: 2016
  ident: D1NR01044A/cit10
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2016.09.004
– start-page: 2
  year: 2015
  ident: D1NR01044A/cit8
  publication-title: Appl. Phys. Rev.
– volume: 28
  start-page: 2887
  year: 2009
  ident: D1NR01044A/cit29
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2009.06.061
– volume: 4
  start-page: 325
  year: 2020
  ident: D1NR01044A/cit53
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0506-0
– volume: 14
  start-page: 2053
  issue: 2
  year: 2020
  ident: D1NR01044A/cit54
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08660
– volume: 26
  start-page: 440
  year: 2016
  ident: D1NR01044A/cit57
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2016.09.004
– volume: 311
  start-page: 187
  year: 2007
  ident: D1NR01044A/cit51
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.10.1156
– volume: 28
  start-page: 1769
  issue: 6
  year: 2016
  ident: D1NR01044A/cit16
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04780
– volume: 110
  start-page: 064907
  year: 2011
  ident: D1NR01044A/cit4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3638695
– volume: 28
  start-page: 1769
  year: 2016
  ident: D1NR01044A/cit41
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04780
– volume: 12
  start-page: 9017
  year: 2020
  ident: D1NR01044A/cit47
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20496
– volume: 9
  start-page: 5830
  year: 2013
  ident: D1NR01044A/cit34
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.10.037
– volume: 113
  start-page: 8606
  year: 2009
  ident: D1NR01044A/cit11
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp901077c
– volume: 288
  start-page: 470
  year: 2005
  ident: D1NR01044A/cit30
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.09.138
– volume: 30
  start-page: S134
  year: 1959
  ident: D1NR01044A/cit14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2185853
– start-page: 227
  volume-title: CNS Cancer
  year: 2009
  ident: D1NR01044A/cit63
  doi: 10.1007/978-1-60327-553-8_12
– volume: 12
  start-page: 217
  issue: 1
  year: 2019
  ident: D1NR01044A/cit43
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b17714
– volume: 130
  start-page: 13234
  year: 2008
  ident: D1NR01044A/cit28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0768744
– volume: 7
  start-page: 12641
  year: 2015
  ident: D1NR01044A/cit12
  publication-title: Nanoscale
  doi: 10.1039/C5NR03096J
– volume: 127
  start-page: 5732
  year: 2005
  ident: D1NR01044A/cit59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0422155
– ident: D1NR01044A/cit68
  doi: 10.1016/j.taap.2013.09.001
– volume: 134
  start-page: 10182
  year: 2012
  ident: D1NR01044A/cit2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302856z
– start-page: 2224
  year: 2008
  ident: D1NR01044A/cit25
  publication-title: Chem. Commun.
  doi: 10.1039/b801041b
– volume: 112
  start-page: 8127
  issue: 22
  year: 2008
  ident: D1NR01044A/cit61
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8029083
– volume: 57
  start-page: 54
  year: 2019
  ident: D1NR01044A/cit65
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2019.02.011
– volume: 435
  start-page: 1214
  year: 2005
  ident: D1NR01044A/cit52
  publication-title: Nature
  doi: 10.1038/nature03808
– volume: 9
  start-page: 1
  year: 2019
  ident: D1NR01044A/cit58
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– volume: 12
  start-page: 7795
  issue: 35
  year: 2000
  ident: D1NR01044A/cit23
  publication-title: J. Phys.: Condens. Matter
– volume: 21
  start-page: 1
  issue: 8
  year: 2019
  ident: D1NR01044A/cit67
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-019-4631-1
– volume: 19
  start-page: 3618
  year: 2019
  ident: D1NR01044A/cit55
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00630
– volume: 5
  start-page: 55
  year: 2015
  ident: D1NR01044A/cit66
  publication-title: Cell Biosci.
  doi: 10.1186/s13578-015-0046-6
– volume: 12
  start-page: 3716
  year: 2012
  ident: D1NR01044A/cit17
  publication-title: Nano Lett.
  doi: 10.1021/nl301499u
– volume: 1
  start-page: 502
  year: 2012
  ident: D1NR01044A/cit60
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201200078
– volume: 33
  start-page: 772
  year: 2015
  ident: D1NR01044A/cit44
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-015-1625-z
– volume: 2
  start-page: 4426
  year: 2014
  ident: D1NR01044A/cit1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c4tb00061g
– volume: 22
  start-page: 13500
  year: 2012
  ident: D1NR01044A/cit27
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30684k
– volume: 38
  start-page: 2499
  year: 2010
  ident: D1NR01044A/cit64
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0023-5
– volume: 16
  start-page: 943
  year: 2006
  ident: D1NR01044A/cit62
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500589
– volume: 36
  start-page: 107
  year: 2013
  ident: D1NR01044A/cit37
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-013-0439-2
SSID ssj0069363
Score 2.4921896
Snippet Spinel ferrite nanocubes (NCs), consisting of pure iron oxide or mixed ferrites, are largely acknowledged for their outstanding performance in magnetic...
SourceID pubmedcentral
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13665
SubjectTerms Aqueous solutions
Biocompatibility
Chemistry
Cobalt ferrites
Crystal lattices
Heating
Hyperthermia
Hysteresis
Iron oxides
Magnetic properties
Magnetic resonance imaging
Nanomaterials
Nanoparticles
Point spread functions
Relaxation time
Signal to noise ratio
Spinel
Synthesis
Transition metals
Zinc
Title Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications
URI https://www.proquest.com/docview/2562446899
https://www.proquest.com/docview/2569379261
https://pubmed.ncbi.nlm.nih.gov/PMC8374679
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJwkBG8IKmjCZOnJi3wgYDQR-gk_ZW2blokapkSlskJvEL-NOcEzuOMxUJeIla27m054vPZ_v4O4S8lL4oRCYAvAWKajOWewpYgxcUUSJSmQiucB7yy5yfnYefLqKL0eiXE7W03ajj9HrnvpL_sSqUgV1xl-w_WNZeFArgM9gXjmBhOP6VjU9KT0dANqWHseF1hSv76ytgjqujAjUXN_lRJas63Sod-7b-UQHjQxESEzlZNiYMXQuAp1a_-XoQhQgerV632q7OgrdLbOfYAOxtcfKtXKGCh97IDngDwOGi_FsbzfxBfi_boplfWQdonYSBria5alX30wY5OG3NeOu11EHSdt4iaCdiA6erDTCWkTGtYX6cu2XxsH9mDg7NZKjubX3GdaIJ47rhe7LTLUwZqqpmftXg8DN0nJ8NSewr98h-EAMRG5P92eni4-fOsXPB2sR89sE7tVsmXvdnD_lNP2i5GXK713QZZloms7hL7pghCJ1pPN0jo7y6T247wpQPyE9AFgWE0AGyqEYWNciiFllvqMWVPgtxRR1c0Zu4ooAr6uCKurh6SM7fny7enXkmUYeXAt_feJJPJQ9FrGD0nUKvDrxLFSGLC9x3zZI4ZVNZ5MJPpQhR8Y6zMMl5xLIoi1WUFeyAjCv4IY8IDcMkkgp5lUxDGciEKSCgkkchjGOKOJmQV93fu0yNij0mU1kt22gKJpYn_vxra4rZhLywba-0dsvOVoedlZbm3V4vYSAAt-WJEBPy3FZDz4vLabLK623bBri9CLg_IfHAuvZuqN0-rKnKy1bDPWGY5weufgA4sO17GD3-U8UTcqt_mw7JeNNs86fAizfqmcHrb2Ckv1Y
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Di-+and+tri-component+spinel+ferrite+nanocubes%3A+synthesis+and+their+comparative+characterization+for+theranostic+applications&rft.jtitle=Nanoscale&rft.au=Silvestri%2C+Niccol%C3%B2&rft.au=Gavil%C3%A1n%2C+Helena&rft.au=Guardia%2C+Pablo&rft.au=Brescia%2C+Rosaria&rft.date=2021-08-28&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=13&rft.issue=32&rft.spage=13665&rft.epage=1368&rft_id=info:doi/10.1039%2Fd1nr01044a&rft.externalDocID=d1nr01044a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon