Classification of Interbeat Interval Time-Series Using Attention Entropy
Classification of interbeat interval time-series which fluctuates in an irregular and complex manner is very challenging. Typically, entropy methods are employed to quantify the complexity of the time-series for classifying. Traditional entropy methods focus on the frequency distribution of all the...
Saved in:
Published in | IEEE transactions on affective computing Vol. 14; no. 1; pp. 321 - 330 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3045 1949-3045 |
DOI | 10.1109/TAFFC.2020.3031004 |
Cover
Summary: | Classification of interbeat interval time-series which fluctuates in an irregular and complex manner is very challenging. Typically, entropy methods are employed to quantify the complexity of the time-series for classifying. Traditional entropy methods focus on the frequency distribution of all the observations in a time-series. This requires a relatively long time-series with at least a couple of thousands of data points, which limits their usages in practical applications. The methods are also sensitive to the parameter settings. In this paper, we propose a conceptually new approach called attention entropy , which pays attention only to the key observations. Instead of counting the frequency of all observations, it analyzes the frequency distribution of the intervals between the key observations in a time-series. Attention entropy does not need any parameter to tune, it is robust to the time-series length, and requires only linear time to compute. Experiments show that it outperforms fourteen state-of-the-art entropy methods evaluated by real-world datasets. It achieves average classification accuracy of AUC = 0.71 while the second-best method, multiscale entropy, achieves AUC = 0.62 when classifying four groups of people with a time-series length of 100. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1949-3045 1949-3045 |
DOI: | 10.1109/TAFFC.2020.3031004 |