Performance Evaluation of Inherent Optical Property Algorithms and Identification of Potential Water Quality Indicators Using GCOM-C Data in Eutrophic Lake Kasumigaura, Japan

Lake Kasumigaura, one of Japan’s largest lakes, presents significant challenges for remote sensing due to its eutrophic conditions and complex optical properties. Although the Global Change Observation Mission-Climate (GCOM-C)/Second-generation Global Imager (SGLI)-derived inherent optical propertie...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 17; no. 9; p. 1621
Main Authors Choto, Misganaw, Higa, Hiroto, Salem, Salem Ibrahim, Siswanto, Eko, Suzuki, Takayuki, Mäll, Martin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 02.05.2025
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs17091621

Cover

More Information
Summary:Lake Kasumigaura, one of Japan’s largest lakes, presents significant challenges for remote sensing due to its eutrophic conditions and complex optical properties. Although the Global Change Observation Mission-Climate (GCOM-C)/Second-generation Global Imager (SGLI)-derived inherent optical properties (IOPs) offer water quality monitoring potential, their performance in such turbid inland waters remains inadequately validated. This study evaluated five established IOP retrieval algorithms, including the quasi-analytical algorithm (QAA_V6), Garver–Siegel–Maritorena (GSM), generalized IOP (GIOP-DC), Plymouth Marine Laboratory (PML), and linear matrix inversion (LMI), using measured remote sensing reflectance (Rrs) and corresponding IOPs between 2017–2018. The results demonstrated that the QAA had the highest performance for retrieving absorption of particles (ap) with a Pearson correlation (r) = 0.98, phytoplankton (aph) with r = 0.97, and non-algal particles (anap) with r = 0.85. In contrast, the GSM algorithm exhibited the best accuracy for estimating absorption by colored dissolved organic matter (aCDOM), with r = 0.87, along with the lowest mean absolute percentage error (MAPE) and root mean square error (RMSE). Additionally, a strong correlation (r = 0.81) was observed between SGLI satellite-derived remote-sensing reflectance (Rrs) and in situ measurements. Notably, a high correlation was observed between the aph (443 nm) and the chlorophyll a (Chl-a) concentration (r = 0.84), as well as between the backscattering coefficient (bbp) at 443 nm and inorganic suspended solids (r = 0.64), confirming that IOPs are reliable water quality assessment indicators. Furthermore, the use of IOPs as variables for estimating water quality parameters such as Chl-a and suspended solids showed better performance compared to empirical methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2072-4292
2072-4292
DOI:10.3390/rs17091621