Rate Distortion Optimization for H.264 Interframe Coding: A General Framework and Algorithms

Rate distortion (RD) optimization for H.264 interframe coding with complete baseline decoding compatibility is investigated on a frame basis. Using soft decision quantization (SDQ) rather than the standard hard decision quantization, we first establish a general framework in which motion estimation,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 16; no. 7; pp. 1774 - 1784
Main Authors YANG, En-Hui, XIANG YU
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
DOI10.1109/TIP.2007.896685

Cover

More Information
Summary:Rate distortion (RD) optimization for H.264 interframe coding with complete baseline decoding compatibility is investigated on a frame basis. Using soft decision quantization (SDQ) rather than the standard hard decision quantization, we first establish a general framework in which motion estimation, quantization, and entropy coding (in H.264) for the current frame can be jointly designed to minimize a true RD cost given previously coded reference frames. We then propose three RD optimization algorithms-a graph-based algorithm for near optimal SDQ in H.264 baseline encoding given motion estimation and quantization step sizes, an algorithm for near optimal residual coding in H.264 baseline encoding given motion estimation, and an iterative overall algorithm to optimize H.264 baseline encoding for each individual frame given previously coded reference frames-with them embedded in the indicated order. The graph-based algorithm for near optimal SDQ is the core; given motion estimation and quantization step sizes, it is guaranteed to perform optimal SDQ if the weak adjacent block dependency utilized in the context adaptive variable length coding of H.264 is ignored for optimization. The proposed algorithms have been implemented based on the reference encoder JM82 of H.264 with complete compatibility to the baseline profile. Experiments show that for a set of typical video testing sequences, the graph-based algorithm for near optimal SDQ, the algorithm for near optimal residual coding, and the overall algorithm achieve on average, 6%, 8%, and 12%, respectively, rate reduction at the same PSNR (ranging from 30 to 38 dB) when compared with the RD optimization method implemented in the H.264 reference software.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2007.896685