Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations

Geographically Weighted Regression (GWR) is a widely used tool for exploring spatial heterogeneity of processes over geographic space. GWR computes location-specific parameter estimates, which makes its calibration process computationally intensive. The maximum number of data points that can be hand...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of geographical information science : IJGIS Vol. 33; no. 1; pp. 155 - 175
Main Authors Li, Ziqi, Fotheringham, A. Stewart, Li, Wenwen, Oshan, Taylor
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.01.2019
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN1365-8816
1362-3087
1365-8824
DOI10.1080/13658816.2018.1521523

Cover

More Information
Summary:Geographically Weighted Regression (GWR) is a widely used tool for exploring spatial heterogeneity of processes over geographic space. GWR computes location-specific parameter estimates, which makes its calibration process computationally intensive. The maximum number of data points that can be handled by current open-source GWR software is approximately 15,000 observations on a standard desktop. In the era of big data, this places a severe limitation on the use of GWR. To overcome this limitation, we propose a highly scalable, open-source FastGWR implementation based on Python and the Message Passing Interface (MPI) that scales to the order of millions of observations. FastGWR optimizes memory usage along with parallelization to boost performance significantly. To illustrate the performance of FastGWR, a hedonic house price model is calibrated on approximately 1.3 million single-family residential properties from a Zillow dataset for the city of Los Angeles, which is the first effort to apply GWR to a dataset of this size. The results show that FastGWR scales linearly as the number of cores within the High-Performance Computing (HPC) environment increases. It also outperforms currently available open-sourced GWR software packages with drastic speed reductions - up to thousands of times faster - on a standard desktop.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1365-8816
1362-3087
1365-8824
DOI:10.1080/13658816.2018.1521523