Fundamental Neurochemistry Review: Microglial immunometabolism in traumatic brain injury
Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microgli...
Saved in:
Published in | Journal of neurochemistry Vol. 167; no. 2; pp. 129 - 153 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3042 1471-4159 1471-4159 |
DOI | 10.1111/jnc.15959 |
Cover
Abstract | Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain‐infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro‐ and anti‐inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro‐inflammatory activation is associated with decreased mitochondrial respiration, whereas anti‐inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post‐traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non‐resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post‐traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI.
image |
---|---|
AbstractList | Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain‐infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro‐ and anti‐inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro‐inflammatory activation is associated with decreased mitochondrial respiration, whereas anti‐inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post‐traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non‐resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post‐traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI. Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI.Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI. Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain‐infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro‐ and anti‐inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro‐inflammatory activation is associated with decreased mitochondrial respiration, whereas anti‐inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post‐traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non‐resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post‐traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI. image Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia’s ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include, a) the nature of microglial mitochondrial dysfunction after TBI, b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions towards advancing immunometabolic phenotyping in TBI. In this fundamental neurochemistry review we examine the relationship between traumatic brain injury (TBI) and immune cell metabolism, primarily focusing on microglia. TBI leads to widespread damage and chronic neurodegeneration, with secondary brain injury involving mitochondrial dysfunction and ongoing neuroinflammation. Microglia contribute to inflammation via cytokine and reactive oxygen species production chronically post-TBI, and promote long-term neurodegeneration. Metabolic pathways in these cells regulate immune responses, with metabolic adaptations driving pro- or anti-inflammatory states. However, questions about microglial mitochondrial dysfunction, the roles of specific metabolic pathways, and how immunometabolism influences chronic neuroinflammation following TBI remain. The review explores these aspects to advance understanding of immunometabolic changes in TBI. |
Author | Polster, Brian M. Strogulski, Nathan R. Portela, Luis V. Loane, David J. |
AuthorAffiliation | 1 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland 3 Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA 2 Neurotrauma and Biomarkers Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil |
AuthorAffiliation_xml | – name: 2 Neurotrauma and Biomarkers Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil – name: 1 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland – name: 3 Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA |
Author_xml | – sequence: 1 givenname: Nathan R. orcidid: 0000-0003-2166-2137 surname: Strogulski fullname: Strogulski, Nathan R. organization: School of Biochemistry and Immunology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland – sequence: 2 givenname: Luis V. orcidid: 0000-0001-6113-8466 surname: Portela fullname: Portela, Luis V. organization: Neurotrauma and Biomarkers Laboratory Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil – sequence: 3 givenname: Brian M. surname: Polster fullname: Polster, Brian M. organization: Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center University of Maryland School of Medicine Baltimore Maryland USA – sequence: 4 givenname: David J. orcidid: 0000-0003-0393-3503 surname: Loane fullname: Loane, David J. organization: School of Biochemistry and Immunology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland, Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center University of Maryland School of Medicine Baltimore Maryland USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37759406$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1LHTEUhoNY9Gpd-AdkoJu6GD0nH3NnuilFaluwLZQK7kImk9FcJolNJpb7782tVqw0m3DIk8P7sUe2ffCGkEOEEyzndOX1CYpOdFtkgXyJNS_TNlkAUFoz4HSX7KW0AsCGN7hDdtlyKToOzYJcnWc_KGf8rKbqm8kx6BvjbJrjuvph7qz5_a76anUM15MthHUu--DMrPow2eQq66s5quzUbHXVR1Vm61c5rl-TV6Oakjl4vPfJ5fnHn2ef64vvn76cfbioNQc-1y0FLpjQaMaODUW3QBhQ9Kxl2lAOnenGgY1AkQ4UBYDgghrW93REwA7YPnn_sPc2984MujiJapK30ToV1zIoK_998fZGXoc7idAI0Ta8bHj7uCGGX9mkWRb_2kyT8ibkJGm7BCzKaFfQNy_QVcjRF38bSjRtAxwLdfRc0pOWv6kX4PgBKLmmFM34hCDITaOyNCr_NFrY0xestnNJO2zc2Ok_P-4BmbmjMA |
CitedBy_id | crossref_primary_10_1007_s11064_024_04316_4 crossref_primary_10_1016_j_jep_2024_118621 crossref_primary_10_4103_NRR_NRR_D_24_00432 crossref_primary_10_1042_CS20230148 crossref_primary_10_1186_s40560_024_00742_2 crossref_primary_10_1007_s10753_024_02185_1 crossref_primary_10_1089_neu_2023_0650 crossref_primary_10_14336_AD_2024_1293 crossref_primary_10_1093_brain_awae305 crossref_primary_10_1016_j_expneurol_2024_115019 crossref_primary_10_1016_j_brainres_2024_148907 crossref_primary_10_1016_j_neurot_2024_e00515 crossref_primary_10_1016_j_heliyon_2024_e38018 crossref_primary_10_3390_neuroglia5020014 crossref_primary_10_4014_jmb_2409_09003 |
Cites_doi | 10.15252/emmm.202114323 10.1016/j.yexcr.2007.06.013 10.3389/fneur.2019.00831 10.1016/j.yexcr.2015.10.026 10.1172/JCI21752 10.1038/nature11986 10.2147/JIR.S350566 10.1016/j.bbadis.2021.166078 10.1186/s12974-021-02244-6 10.1073/pnas.91.22.10625 10.1016/j.freeradbiomed.2017.09.017 10.1016/j.chom.2023.01.009 10.1016/j.imlet.2021.08.006 10.1089/neu.2015.4160 10.1074/jbc.R115.693903 10.1016/j.bbadis.2017.03.015 10.1016/j.cellimm.2021.104450 10.1038/s41590-022-01185-3 10.3390/ijms22136965 10.1002/(SICI)1098-1136(199711)21:3<327::AID-GLIA7>3.0.CO;2-1 10.3389/fnene.2013.00013 10.1038/sj.jcbfm.9600543 10.1016/j.mito.2021.01.003 10.1016/j.neuron.2022.10.020 10.3389/fimmu.2022.1013686 10.1096/fj.202101469RR 10.1186/s40635-021-00404-9 10.1111/febs.15715 10.1002/acn3.416 10.1088/1748-605X/aa9b3c 10.1016/j.atherosclerosis.2022.05.015 10.3389/fnsys.2016.00029 10.1016/j.bbi.2020.05.052 10.1002/glia.23760 10.1371/journal.pone.0072046 10.3389/fncel.2021.811061 10.1126/science.1156995 10.1016/j.neuint.2017.03.015 10.1126/science.8346443 10.1007/978-1-0716-0747-3_5 10.1016/j.jneumeth.2016.02.004 10.1038/s41598-018-29255-3 10.1016/j.expneurol.2020.113243 10.3389/fimmu.2021.770744 10.1016/j.seizure.2020.07.011 10.3389/fnagi.2022.1075161 10.1016/j.brainresrev.2008.09.002 10.1016/j.expneurol.2020.113282 10.3892/mmr.2021.12311 10.1126/scitranslmed.abe5640 10.1111/bpa.13126 10.2139/ssrn.4178538 10.1111/j.1471-4159.1977.tb10649.x 10.1242/jeb.202.2.211 10.1111/bpa.12704 10.1016/j.cell.2020.10.026 10.1186/s40478-018-0636-8 10.1016/j.neuint.2006.01.005 10.1016/j.trsl.2021.03.017 10.1016/j.expneurol.2015.05.009 10.1111/jnc.15522 10.1111/j.1471-4159.2011.07572.x 10.1186/s12964-022-00849-9 10.1523/JNEUROSCI.1539-22.2022 10.3389/fphys.2020.00012 10.5607/en21027 10.1007/s12028-022-01507-1 10.1038/s42003-021-02259-y 10.1001/jamapediatrics.2020.2282 10.1056/NEJMoa1211851 10.3390/metabo12080710 10.1038/s41467-022-29506-y 10.1007/s00125-008-1256-9 10.1038/s41598-017-11956-w 10.1042/BSR20190072 10.1089/neu.2012.2339 10.1038/nm.3804 10.1002/glia.20225 10.1038/ni.1831 10.1016/j.neuint.2021.105154 10.1016/j.jneuroim.2004.12.015 10.1002/glia.24130 10.1007/s11064-012-0901-3 10.1016/j.cmet.2012.04.023 10.1089/neu.2015.4268 10.1016/j.nbd.2013.01.018 10.1016/0140-6736(90)92083-T 10.1038/s41593-020-00757-6 10.1111/cns.13265 10.1007/3-211-32318-X_35 10.1016/j.expneurol.2015.08.018 10.1186/s12974-019-1648-4 10.1002/jcb.25074 10.1186/s12974-020-01768-7 10.1016/j.immuni.2015.02.017 10.1186/s12974-019-1659-1 10.1089/neu.2021.0096 10.1038/jcbfm.2014.243 10.1089/neu.2008.0586 10.1016/j.tins.2021.11.001 10.1016/j.mcn.2020.103569 10.1186/s12974-016-0604-9 10.1097/00004647-200207000-00014 10.1007/s12035-021-02501-y 10.1007/s10753-012-9447-4 10.1038/s42255-022-00550-8 10.1007/s11064-013-1055-7 10.1016/j.bbabio.2018.05.005 10.1002/glia.23913 10.1016/j.bbi.2020.01.012 10.1038/s41576-023-00580-2 10.3390/ijms20225774 10.1097/NEN.0000000000000021 10.1089/neu.2018.6266 10.1038/s41593-022-01199-y 10.3389/fncel.2022.939830 10.1007/s11306-022-01886-8 10.1074/jbc.M113.522037 10.1038/s42255-022-00575-z 10.1021/acs.jproteome.8b00068 10.1152/ajpcell.00276.2022 10.1186/s13024-017-0150-7 10.1074/jbc.M307657200 10.1016/j.nbd.2020.104866 10.1038/s41589-019-0462-8 10.1097/CCM.0b013e31820eda5c 10.1039/D0LC01034K 10.1038/nrneurol.2017.13 10.1089/neu.2016.4540 10.1002/cyto.a.23886 10.1089/neu.2005.22.1052 10.1177/0271678X211069006 10.1016/j.tins.2013.07.001 10.1186/s12964-018-0293-3 10.1038/s41593-019-0566-1 10.1073/pnas.90.5.1977 10.1038/ni.3796 10.1007/s10571-022-01299-0 10.1016/j.cmet.2016.10.008 10.1111/j.1471-4159.2006.03758.x 10.1007/s11064-020-03156-2 10.4049/jimmunol.161.2.978 10.1016/j.cmet.2019.06.005 10.3389/fimmu.2022.942768 10.1016/j.neulet.2007.11.033 10.1016/j.immuni.2015.02.005 10.1038/nri2725 10.1016/j.seizure.2014.06.005 10.1016/j.molimm.2021.10.017 10.1016/j.neurobiolaging.2007.09.001 10.1186/s12974-014-0230-3 10.3390/ijms231710184 10.1523/JNEUROSCI.2402-19.2020 10.1016/j.cmet.2020.07.015 10.1186/s13024-022-00547-7 10.1046/j.1471-4159.2002.00990.x 10.1002/1873-3468.13298 10.1124/mol.106.033845 10.1093/braincomms/fcad032 10.1155/2017/6057609 10.1016/j.expneurol.2017.01.004 10.3390/cells10113147 10.1038/s41598-021-92436-0 10.1038/s41467-020-14433-7 10.1089/neu.2020.7379 10.1038/sj.npp.1301381 10.1016/j.bbi.2016.07.158 10.1038/s41598-017-01149-w 10.1016/j.cmet.2020.07.016 10.1046/j.1460-9568.2001.01418.x 10.1016/j.neuroimage.2018.12.033 10.1186/s12974-021-02187-y 10.1111/j.1582-4934.2007.00144.x 10.3390/metabo12040322 10.1016/j.tips.2010.09.005 10.1016/j.neuron.2019.12.007 10.1038/s41467-019-10626-x 10.1016/j.brainres.2012.12.022 10.1007/s10863-021-09878-4 10.1016/S1474-4422(17)30371-X 10.1186/s13024-020-00394-4 10.1021/acs.jmedchem.2c01359 10.3171/2019.6.JNS1954 10.1182/blood-2007-06-096222 10.1126/sciadv.abi8602 10.1126/sciadv.add1101 10.1007/s11064-015-1600-7 10.1089/neur.2021.0021 10.1089/neu.2006.3673 10.1016/j.eplepsyres.2014.09.033 10.1080/1028415X.2020.1853414 10.1093/brain/awab255 10.1089/neu.2018.5663 10.3390/ijms22052578 10.1074/jbc.271.28.16690 10.1038/s42255-022-00643-4 10.1515/hsz-2013-0152 10.1038/s41418-017-0020-4 10.1523/JNEUROSCI.22-03-00782.2002 10.33594/000000245 10.1016/j.nbd.2022.105615 10.1177/0271678X18808947 10.1371/journal.pone.0109818 10.1159/000094170 10.1038/jcbfm.2011.91 10.1038/sj.jcbfm.9600297 10.1038/nn.4492 10.1042/bj2080743 10.1007/s11745-014-3882-y 10.1093/brain/awab341 10.1089/neu.2009.1181 10.1038/ncb2330 10.1523/JNEUROSCI.23-13-05928.2003 10.1038/s42255-022-00619-4 10.1038/s41551-019-0393-4 10.1016/j.neuint.2017.09.003 10.1016/j.cytogfr.2022.08.006 10.15252/emmm.202217175 10.1177/0271678X211042112 10.1038/s41467-020-15267-z 10.1038/s41598-018-34518-0 10.1007/BF00344388 10.1038/34178 10.1016/j.brainres.2022.147934 10.1186/s13024-019-0305-9 10.1016/j.freeradbiomed.2014.07.033 10.1016/j.bbabio.2017.12.002 10.1111/jcmm.14206 10.1038/sj.jid.5700586 10.1038/nature13490 10.1038/s41467-020-19861-z 10.1016/j.stem.2022.07.005 10.1016/j.semcdb.2020.08.001 10.3389/fimmu.2022.1051514 10.1038/nri.2016.70 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
DOI | 10.1111/jnc.15959 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1471-4159 |
EndPage | 153 |
ExternalDocumentID | PMC10655864 37759406 10_1111_jnc_15959 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS082308 – fundername: NINDS NIH HHS grantid: R01 NS122777 – fundername: NINDS NIH HHS grantid: R01 NS112212 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAYXX AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG CITATION COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
ID | FETCH-LOGICAL-c404t-8204535c1ef93d415510d15b383ce2409e9fd3f0212d215005452e3bb2f101903 |
ISSN | 0022-3042 1471-4159 |
IngestDate | Thu Aug 21 18:31:03 EDT 2025 Thu Jul 10 22:20:12 EDT 2025 Fri Jul 25 11:02:55 EDT 2025 Mon Jul 21 05:48:09 EDT 2025 Tue Jul 01 04:39:43 EDT 2025 Thu Apr 24 22:57:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | traumatic brain injury neuroimmunology metabolism microglia mitochondria |
Language | English |
License | 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c404t-8204535c1ef93d415510d15b383ce2409e9fd3f0212d215005452e3bb2f101903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 No Brian M. Polster, PhD Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, 685 W. Baltimore St., MSTF 5-34, Baltimore, MD 21201, USA, bpolster@som.umaryland.edu "All experiments were conducted in compliance with the ARRIVE guidelines." unless it is a Review or Editorial NRS: Conceptualization, Writing - Original Draft, Writing - Review & Editing, Funding acquisition. LVP: Writing - Review & Editing, Funding acquisition. BMP: Writing - Review & Editing, Funding acquisition. DJL: Conceptualization, Writing - Original Draft, Writing - Review & Editing, Funding acquisition. if it is a Review or Editorial, skip complete sentence Author contribution statement Author contributions-- NA if No, include a statement in the "Conflict of interest disclosure" section: "ARRIVE guidelines were not followed for the following reason ARRIVE guidelines have been followed (edit phrasing to form a complete sentence as necessary). Luis Valmor Portela, PhD, Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Ramiro Barcelos 2600, anexo, Bairro Santana, Porto Alegre, RS, Brasil, roskaportela@gmail.com if Yes, insert in the "Conflict of interest disclosure" section |
ORCID | 0000-0001-6113-8466 0000-0003-2166-2137 0000-0003-0393-3503 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jnc.15959 |
PMID | 37759406 |
PQID | 2875686041 |
PQPubID | 31528 |
PageCount | 25 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10655864 proquest_miscellaneous_2870141529 proquest_journals_2875686041 pubmed_primary_37759406 crossref_primary_10_1111_jnc_15959 crossref_citationtrail_10_1111_jnc_15959 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Journal of neurochemistry |
PublicationTitleAlternate | J Neurochem |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | e_1_2_22_90_1 e_1_2_22_217_1 e_1_2_22_172_1 e_1_2_22_75_1 e_1_2_22_98_1 e_1_2_22_111_1 e_1_2_22_157_1 e_1_2_22_195_1 e_1_2_22_26_1 e_1_2_22_134_1 e_1_2_22_14_1 e_1_2_22_108_1 e_1_2_22_52_1 e_1_2_22_220_1 e_1_2_22_205_1 e_1_2_22_206_1 e_1_2_22_229_1 e_1_2_22_183_1 e_1_2_22_160_1 e_1_2_22_64_1 e_1_2_22_87_1 e_1_2_22_122_1 e_1_2_22_168_1 e_1_2_22_15_1 e_1_2_22_38_1 e_1_2_22_5_1 e_1_2_22_145_1 e_1_2_22_119_1 e_1_2_22_41_1 e_1_2_22_232_1 e_1_2_22_239_1 e_1_2_22_171_1 e_1_2_22_74_1 e_1_2_22_97_1 e_1_2_22_110_1 e_1_2_22_133_1 e_1_2_22_156_1 e_1_2_22_179_1 e_1_2_22_194_1 e_1_2_22_48_1 e_1_2_22_13_1 e_1_2_22_36_1 e_1_2_22_107_1 e_1_2_22_51_1 e_1_2_22_204_1 e_1_2_22_227_1 e_1_2_22_228_1 e_1_2_22_182_1 e_1_2_22_63_1 e_1_2_22_86_1 e_1_2_22_121_1 e_1_2_22_144_1 e_1_2_22_167_1 e_1_2_22_4_1 e_1_2_22_37_1 e_1_2_22_25_1 e_1_2_22_118_1 e_1_2_22_40_1 e_1_2_22_231_1 e_1_2_22_216_1 e_1_2_22_219_1 e_1_2_22_174_1 e_1_2_22_151_1 e_1_2_22_73_1 e_1_2_22_96_1 e_1_2_22_136_1 e_1_2_22_159_1 e_1_2_22_58_1 e_1_2_22_113_1 e_1_2_22_197_1 e_1_2_22_35_1 e_1_2_22_12_1 e_1_2_22_50_1 e_1_2_22_222_1 e_1_2_22_208_1 e_1_2_22_185_1 e_1_2_22_162_1 e_1_2_22_62_1 e_1_2_22_85_1 e_1_2_22_3_1 e_1_2_22_101_1 e_1_2_22_124_1 e_1_2_22_24_1 e_1_2_22_47_1 e_1_2_22_59_1 e_1_2_22_211_1 e_1_2_22_234_1 e_1_2_22_150_1 e_1_2_22_173_1 e_1_2_22_218_1 e_1_2_22_72_1 e_1_2_22_95_1 e_1_2_22_158_1 e_1_2_22_57_1 e_1_2_22_112_1 e_1_2_22_135_1 e_1_2_22_196_1 e_1_2_22_11_1 e_1_2_22_34_1 e_1_2_22_109_1 e_1_2_22_221_1 e_1_2_22_161_1 e_1_2_22_184_1 e_1_2_22_207_1 e_1_2_22_61_1 e_1_2_22_2_1 e_1_2_22_84_1 e_1_2_22_169_1 e_1_2_22_100_1 e_1_2_22_123_1 e_1_2_22_69_1 e_1_2_22_46_1 e_1_2_22_23_1 e_1_2_22_233_1 e_1_2_22_210_1 e_1_2_22_153_1 e_1_2_22_199_1 e_1_2_22_130_1 e_1_2_22_71_1 e_1_2_22_94_1 Di Cara F. (e_1_2_22_49_1) 2017; 47 e_1_2_22_115_1 e_1_2_22_191_1 e_1_2_22_138_1 e_1_2_22_79_1 e_1_2_22_176_1 e_1_2_22_56_1 e_1_2_22_33_1 e_1_2_22_10_1 e_1_2_22_201_1 e_1_2_22_224_1 e_1_2_22_164_1 e_1_2_22_141_1 e_1_2_22_60_1 e_1_2_22_83_1 e_1_2_22_103_1 e_1_2_22_126_1 e_1_2_22_19_1 e_1_2_22_149_1 e_1_2_22_68_1 Nedel W. L. (e_1_2_22_146_1) 2022; 66 e_1_2_22_187_1 e_1_2_22_22_1 e_1_2_22_45_1 e_1_2_22_213_1 e_1_2_22_236_1 Lin Y. T. (e_1_2_22_106_1) 2018; 98 e_1_2_22_152_1 e_1_2_22_175_1 e_1_2_22_198_1 e_1_2_22_70_1 e_1_2_22_93_1 e_1_2_22_114_1 e_1_2_22_137_1 e_1_2_22_190_1 e_1_2_22_29_1 e_1_2_22_78_1 Newsholme E. A. (e_1_2_22_147_1) 1987; 54 e_1_2_22_9_1 e_1_2_22_55_1 e_1_2_22_32_1 e_1_2_22_200_1 e_1_2_22_223_1 e_1_2_22_140_1 e_1_2_22_163_1 e_1_2_22_186_1 e_1_2_22_209_1 e_1_2_22_82_1 e_1_2_22_148_1 e_1_2_22_125_1 e_1_2_22_18_1 e_1_2_22_67_1 e_1_2_22_102_1 e_1_2_22_44_1 e_1_2_22_21_1 e_1_2_22_212_1 e_1_2_22_235_1 e_1_2_22_92_1 e_1_2_22_170_1 e_1_2_22_117_1 e_1_2_22_193_1 e_1_2_22_28_1 e_1_2_22_77_1 e_1_2_22_132_1 e_1_2_22_178_1 e_1_2_22_155_1 e_1_2_22_8_1 e_1_2_22_54_1 e_1_2_22_31_1 e_1_2_22_129_1 e_1_2_22_226_1 e_1_2_22_203_1 e_1_2_22_120_1 e_1_2_22_81_1 e_1_2_22_181_1 e_1_2_22_105_1 e_1_2_22_128_1 e_1_2_22_17_1 e_1_2_22_66_1 e_1_2_22_89_1 e_1_2_22_7_1 e_1_2_22_143_1 e_1_2_22_189_1 e_1_2_22_166_1 e_1_2_22_20_1 e_1_2_22_43_1 e_1_2_22_230_1 e_1_2_22_215_1 e_1_2_22_238_1 e_1_2_22_131_1 e_1_2_22_91_1 e_1_2_22_116_1 e_1_2_22_139_1 e_1_2_22_192_1 e_1_2_22_76_1 e_1_2_22_99_1 e_1_2_22_154_1 e_1_2_22_177_1 e_1_2_22_27_1 e_1_2_22_53_1 e_1_2_22_240_1 e_1_2_22_30_1 e_1_2_22_202_1 e_1_2_22_225_1 e_1_2_22_142_1 e_1_2_22_80_1 e_1_2_22_180_1 e_1_2_22_104_1 e_1_2_22_65_1 e_1_2_22_127_1 e_1_2_22_6_1 e_1_2_22_39_1 e_1_2_22_88_1 e_1_2_22_165_1 e_1_2_22_188_1 e_1_2_22_16_1 e_1_2_22_42_1 e_1_2_22_237_1 e_1_2_22_214_1 |
References_xml | – ident: e_1_2_22_75_1 doi: 10.15252/emmm.202114323 – ident: e_1_2_22_144_1 doi: 10.1016/j.yexcr.2007.06.013 – ident: e_1_2_22_159_1 doi: 10.3389/fneur.2019.00831 – ident: e_1_2_22_225_1 doi: 10.1016/j.yexcr.2015.10.026 – ident: e_1_2_22_217_1 doi: 10.1172/JCI21752 – ident: e_1_2_22_204_1 doi: 10.1038/nature11986 – ident: e_1_2_22_232_1 doi: 10.2147/JIR.S350566 – ident: e_1_2_22_161_1 doi: 10.1016/j.bbadis.2021.166078 – ident: e_1_2_22_38_1 doi: 10.1186/s12974-021-02244-6 – ident: e_1_2_22_169_1 doi: 10.1073/pnas.91.22.10625 – ident: e_1_2_22_214_1 doi: 10.1016/j.freeradbiomed.2017.09.017 – ident: e_1_2_22_25_1 doi: 10.1016/j.chom.2023.01.009 – ident: e_1_2_22_12_1 doi: 10.1016/j.imlet.2021.08.006 – ident: e_1_2_22_138_1 doi: 10.1089/neu.2015.4160 – volume: 54 start-page: 145 year: 1987 ident: e_1_2_22_147_1 article-title: The role of the citric acid cycle in cells of the immune system and its importance in sepsis, trauma and burns publication-title: Biochemical Society Symposium – ident: e_1_2_22_116_1 doi: 10.1074/jbc.R115.693903 – ident: e_1_2_22_5_1 doi: 10.1016/j.bbadis.2017.03.015 – ident: e_1_2_22_200_1 doi: 10.1016/j.cellimm.2021.104450 – ident: e_1_2_22_20_1 doi: 10.1038/s41590-022-01185-3 – ident: e_1_2_22_107_1 doi: 10.3390/ijms22136965 – ident: e_1_2_22_168_1 doi: 10.1002/(SICI)1098-1136(199711)21:3<327::AID-GLIA7>3.0.CO;2-1 – ident: e_1_2_22_27_1 doi: 10.3389/fnene.2013.00013 – ident: e_1_2_22_174_1 doi: 10.1038/sj.jcbfm.9600543 – ident: e_1_2_22_37_1 doi: 10.1016/j.mito.2021.01.003 – ident: e_1_2_22_166_1 doi: 10.1016/j.neuron.2022.10.020 – ident: e_1_2_22_238_1 doi: 10.3389/fimmu.2022.1013686 – ident: e_1_2_22_79_1 doi: 10.1096/fj.202101469RR – ident: e_1_2_22_145_1 doi: 10.1186/s40635-021-00404-9 – ident: e_1_2_22_94_1 doi: 10.1111/febs.15715 – ident: e_1_2_22_196_1 doi: 10.1002/acn3.416 – ident: e_1_2_22_190_1 doi: 10.1088/1748-605X/aa9b3c – ident: e_1_2_22_155_1 doi: 10.1016/j.atherosclerosis.2022.05.015 – ident: e_1_2_22_56_1 doi: 10.3389/fnsys.2016.00029 – ident: e_1_2_22_35_1 doi: 10.1016/j.bbi.2020.05.052 – ident: e_1_2_22_78_1 doi: 10.1002/glia.23760 – ident: e_1_2_22_61_1 doi: 10.1371/journal.pone.0072046 – ident: e_1_2_22_90_1 doi: 10.3389/fncel.2021.811061 – volume: 66 start-page: 7 year: 2022 ident: e_1_2_22_146_1 article-title: Short‐term inflammatory biomarkers profile are associated with deficient mitochondrial bioenergetics in lymphocytes of septic shock patients—a prospective cohort study publication-title: Shock – volume: 47 issue: 93 year: 2017 ident: e_1_2_22_49_1 article-title: Peroxisome‐mediated metabolism is required for immune response to microbial infection publication-title: Immunity – ident: e_1_2_22_52_1 doi: 10.1126/science.1156995 – ident: e_1_2_22_74_1 doi: 10.1016/j.neuint.2017.03.015 – ident: e_1_2_22_46_1 doi: 10.1126/science.8346443 – ident: e_1_2_22_158_1 doi: 10.1007/978-1-0716-0747-3_5 – ident: e_1_2_22_182_1 doi: 10.1016/j.jneumeth.2016.02.004 – ident: e_1_2_22_198_1 doi: 10.1038/s41598-018-29255-3 – ident: e_1_2_22_227_1 doi: 10.1016/j.expneurol.2020.113243 – ident: e_1_2_22_220_1 doi: 10.3389/fimmu.2021.770744 – ident: e_1_2_22_216_1 doi: 10.1016/j.seizure.2020.07.011 – ident: e_1_2_22_201_1 doi: 10.3389/fnagi.2022.1075161 – ident: e_1_2_22_123_1 doi: 10.1016/j.brainresrev.2008.09.002 – ident: e_1_2_22_85_1 doi: 10.1016/j.expneurol.2020.113282 – ident: e_1_2_22_223_1 doi: 10.3892/mmr.2021.12311 – ident: e_1_2_22_221_1 doi: 10.1126/scitranslmed.abe5640 – ident: e_1_2_22_222_1 doi: 10.1111/bpa.13126 – ident: e_1_2_22_134_1 doi: 10.2139/ssrn.4178538 – ident: e_1_2_22_193_1 doi: 10.1111/j.1471-4159.1977.tb10649.x – ident: e_1_2_22_102_1 doi: 10.1242/jeb.202.2.211 – ident: e_1_2_22_131_1 doi: 10.1111/bpa.12704 – ident: e_1_2_22_111_1 doi: 10.1016/j.cell.2020.10.026 – ident: e_1_2_22_151_1 doi: 10.1186/s40478-018-0636-8 – ident: e_1_2_22_195_1 doi: 10.1016/j.neuint.2006.01.005 – ident: e_1_2_22_235_1 doi: 10.1016/j.trsl.2021.03.017 – ident: e_1_2_22_95_1 doi: 10.1016/j.expneurol.2015.05.009 – ident: e_1_2_22_31_1 doi: 10.1111/jnc.15522 – ident: e_1_2_22_39_1 doi: 10.1111/j.1471-4159.2011.07572.x – ident: e_1_2_22_137_1 doi: 10.1186/s12964-022-00849-9 – ident: e_1_2_22_108_1 doi: 10.1523/JNEUROSCI.1539-22.2022 – ident: e_1_2_22_82_1 doi: 10.3389/fphys.2020.00012 – ident: e_1_2_22_65_1 doi: 10.5607/en21027 – ident: e_1_2_22_185_1 doi: 10.1007/s12028-022-01507-1 – ident: e_1_2_22_68_1 doi: 10.1038/s42003-021-02259-y – ident: e_1_2_22_194_1 doi: 10.1001/jamapediatrics.2020.2282 – ident: e_1_2_22_67_1 doi: 10.1056/NEJMoa1211851 – ident: e_1_2_22_187_1 doi: 10.3390/metabo12080710 – ident: e_1_2_22_70_1 doi: 10.1038/s41467-022-29506-y – ident: e_1_2_22_43_1 doi: 10.1007/s00125-008-1256-9 – ident: e_1_2_22_186_1 doi: 10.1038/s41598-017-11956-w – ident: e_1_2_22_33_1 doi: 10.1042/BSR20190072 – ident: e_1_2_22_14_1 doi: 10.1089/neu.2012.2339 – ident: e_1_2_22_229_1 doi: 10.1038/nm.3804 – ident: e_1_2_22_176_1 doi: 10.1002/glia.20225 – ident: e_1_2_22_239_1 doi: 10.1038/ni.1831 – ident: e_1_2_22_40_1 doi: 10.1016/j.neuint.2021.105154 – ident: e_1_2_22_197_1 doi: 10.1016/j.jneuroim.2004.12.015 – ident: e_1_2_22_210_1 doi: 10.1002/glia.24130 – ident: e_1_2_22_132_1 doi: 10.1007/s11064-012-0901-3 – ident: e_1_2_22_71_1 doi: 10.1016/j.cmet.2012.04.023 – ident: e_1_2_22_98_1 doi: 10.1089/neu.2015.4268 – ident: e_1_2_22_92_1 doi: 10.1016/j.nbd.2013.01.018 – ident: e_1_2_22_167_1 doi: 10.1016/0140-6736(90)92083-T – ident: e_1_2_22_16_1 doi: 10.1038/s41593-020-00757-6 – ident: e_1_2_22_170_1 doi: 10.1111/cns.13265 – ident: e_1_2_22_150_1 doi: 10.1007/3-211-32318-X_35 – ident: e_1_2_22_114_1 doi: 10.1016/j.expneurol.2015.08.018 – ident: e_1_2_22_97_1 doi: 10.1186/s12974-019-1648-4 – ident: e_1_2_22_142_1 doi: 10.1002/jcb.25074 – ident: e_1_2_22_100_1 doi: 10.1186/s12974-020-01768-7 – ident: e_1_2_22_153_1 doi: 10.1016/j.immuni.2015.02.017 – ident: e_1_2_22_207_1 doi: 10.1186/s12974-019-1659-1 – ident: e_1_2_22_48_1 doi: 10.1089/neu.2021.0096 – ident: e_1_2_22_60_1 doi: 10.1038/jcbfm.2014.243 – ident: e_1_2_22_183_1 doi: 10.1089/neu.2008.0586 – ident: e_1_2_22_184_1 doi: 10.1016/j.tins.2021.11.001 – ident: e_1_2_22_117_1 doi: 10.1016/j.mcn.2020.103569 – ident: e_1_2_22_83_1 doi: 10.1186/s12974-016-0604-9 – ident: e_1_2_22_163_1 doi: 10.1097/00004647-200207000-00014 – ident: e_1_2_22_140_1 doi: 10.1007/s12035-021-02501-y – ident: e_1_2_22_179_1 doi: 10.1007/s10753-012-9447-4 – ident: e_1_2_22_24_1 doi: 10.1038/s42255-022-00550-8 – ident: e_1_2_22_230_1 doi: 10.1007/s11064-013-1055-7 – ident: e_1_2_22_139_1 doi: 10.1016/j.bbabio.2018.05.005 – ident: e_1_2_22_228_1 doi: 10.1002/glia.23913 – ident: e_1_2_22_135_1 doi: 10.1016/j.bbi.2020.01.012 – ident: e_1_2_22_208_1 doi: 10.1038/s41576-023-00580-2 – ident: e_1_2_22_103_1 doi: 10.3390/ijms20225774 – ident: e_1_2_22_115_1 doi: 10.1097/NEN.0000000000000021 – ident: e_1_2_22_30_1 doi: 10.1089/neu.2018.6266 – ident: e_1_2_22_231_1 doi: 10.1038/s41593-022-01199-y – ident: e_1_2_22_152_1 doi: 10.3389/fncel.2022.939830 – ident: e_1_2_22_9_1 doi: 10.1007/s11306-022-01886-8 – ident: e_1_2_22_58_1 doi: 10.1074/jbc.M113.522037 – ident: e_1_2_22_110_1 doi: 10.1038/s42255-022-00575-z – ident: e_1_2_22_76_1 doi: 10.1021/acs.jproteome.8b00068 – volume: 98 issue: 1141 year: 2018 ident: e_1_2_22_106_1 article-title: APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC‐derived brain cell types publication-title: Neuron – ident: e_1_2_22_50_1 doi: 10.1152/ajpcell.00276.2022 – ident: e_1_2_22_122_1 doi: 10.1186/s13024-017-0150-7 – ident: e_1_2_22_177_1 doi: 10.1074/jbc.M307657200 – ident: e_1_2_22_209_1 doi: 10.1016/j.nbd.2020.104866 – ident: e_1_2_22_91_1 doi: 10.1038/s41589-019-0462-8 – ident: e_1_2_22_87_1 doi: 10.1097/CCM.0b013e31820eda5c – ident: e_1_2_22_172_1 doi: 10.1039/D0LC01034K – ident: e_1_2_22_191_1 doi: 10.1038/nrneurol.2017.13 – ident: e_1_2_22_22_1 doi: 10.1089/neu.2016.4540 – ident: e_1_2_22_157_1 doi: 10.1002/cyto.a.23886 – ident: e_1_2_22_15_1 doi: 10.1089/neu.2005.22.1052 – ident: e_1_2_22_188_1 doi: 10.1177/0271678X211069006 – ident: e_1_2_22_136_1 doi: 10.1016/j.tins.2013.07.001 – ident: e_1_2_22_189_1 doi: 10.1186/s12964-018-0293-3 – ident: e_1_2_22_129_1 doi: 10.1038/s41593-019-0566-1 – ident: e_1_2_22_199_1 doi: 10.1073/pnas.90.5.1977 – ident: e_1_2_22_109_1 doi: 10.1038/ni.3796 – ident: e_1_2_22_2_1 doi: 10.1007/s10571-022-01299-0 – ident: e_1_2_22_10_1 doi: 10.1016/j.cmet.2016.10.008 – ident: e_1_2_22_118_1 doi: 10.1111/j.1471-4159.2006.03758.x – ident: e_1_2_22_96_1 doi: 10.1007/s11064-020-03156-2 – ident: e_1_2_22_44_1 doi: 10.4049/jimmunol.161.2.978 – ident: e_1_2_22_13_1 doi: 10.1016/j.cmet.2019.06.005 – ident: e_1_2_22_119_1 doi: 10.3389/fimmu.2022.942768 – ident: e_1_2_22_156_1 doi: 10.1016/j.neulet.2007.11.033 – ident: e_1_2_22_88_1 doi: 10.1016/j.immuni.2015.02.005 – ident: e_1_2_22_206_1 doi: 10.1038/nri2725 – ident: e_1_2_22_29_1 doi: 10.1016/j.seizure.2014.06.005 – ident: e_1_2_22_105_1 doi: 10.1016/j.molimm.2021.10.017 – ident: e_1_2_22_112_1 doi: 10.1016/j.neurobiolaging.2007.09.001 – ident: e_1_2_22_59_1 doi: 10.1186/s12974-014-0230-3 – ident: e_1_2_22_205_1 doi: 10.3390/ijms231710184 – ident: e_1_2_22_72_1 doi: 10.1523/JNEUROSCI.2402-19.2020 – ident: e_1_2_22_41_1 doi: 10.1016/j.cmet.2020.07.015 – ident: e_1_2_22_219_1 doi: 10.1186/s13024-022-00547-7 – ident: e_1_2_22_23_1 doi: 10.1046/j.1471-4159.2002.00990.x – ident: e_1_2_22_128_1 doi: 10.1002/1873-3468.13298 – ident: e_1_2_22_63_1 doi: 10.1124/mol.106.033845 – ident: e_1_2_22_81_1 doi: 10.1093/braincomms/fcad032 – ident: e_1_2_22_121_1 doi: 10.1155/2017/6057609 – ident: e_1_2_22_218_1 doi: 10.1016/j.expneurol.2017.01.004 – ident: e_1_2_22_11_1 doi: 10.3390/cells10113147 – ident: e_1_2_22_202_1 doi: 10.1038/s41598-021-92436-0 – ident: e_1_2_22_162_1 doi: 10.1038/s41467-020-14433-7 – ident: e_1_2_22_164_1 doi: 10.1089/neu.2020.7379 – ident: e_1_2_22_236_1 doi: 10.1038/sj.npp.1301381 – ident: e_1_2_22_99_1 doi: 10.1016/j.bbi.2016.07.158 – ident: e_1_2_22_66_1 doi: 10.1038/s41598-017-01149-w – ident: e_1_2_22_77_1 doi: 10.1016/j.cmet.2020.07.016 – ident: e_1_2_22_141_1 doi: 10.1046/j.1460-9568.2001.01418.x – ident: e_1_2_22_86_1 doi: 10.1016/j.neuroimage.2018.12.033 – ident: e_1_2_22_36_1 doi: 10.1186/s12974-021-02187-y – ident: e_1_2_22_237_1 doi: 10.1111/j.1582-4934.2007.00144.x – ident: e_1_2_22_6_1 doi: 10.3390/metabo12040322 – ident: e_1_2_22_113_1 doi: 10.1016/j.tips.2010.09.005 – ident: e_1_2_22_149_1 doi: 10.1016/j.neuron.2019.12.007 – ident: e_1_2_22_130_1 doi: 10.1038/s41467-019-10626-x – ident: e_1_2_22_69_1 doi: 10.1016/j.brainres.2012.12.022 – ident: e_1_2_22_171_1 doi: 10.1007/s10863-021-09878-4 – ident: e_1_2_22_124_1 doi: 10.1016/S1474-4422(17)30371-X – ident: e_1_2_22_57_1 doi: 10.1186/s13024-020-00394-4 – ident: e_1_2_22_173_1 doi: 10.1021/acs.jmedchem.2c01359 – ident: e_1_2_22_226_1 doi: 10.3171/2019.6.JNS1954 – ident: e_1_2_22_203_1 doi: 10.1182/blood-2007-06-096222 – ident: e_1_2_22_148_1 doi: 10.1126/sciadv.abi8602 – ident: e_1_2_22_181_1 doi: 10.1126/sciadv.add1101 – ident: e_1_2_22_133_1 doi: 10.1007/s11064-015-1600-7 – ident: e_1_2_22_32_1 doi: 10.1089/neur.2021.0021 – ident: e_1_2_22_165_1 doi: 10.1089/neu.2006.3673 – ident: e_1_2_22_28_1 doi: 10.1016/j.eplepsyres.2014.09.033 – ident: e_1_2_22_4_1 doi: 10.1080/1028415X.2020.1853414 – ident: e_1_2_22_73_1 doi: 10.1093/brain/awab255 – ident: e_1_2_22_120_1 doi: 10.1089/neu.2018.5663 – ident: e_1_2_22_101_1 doi: 10.3390/ijms22052578 – ident: e_1_2_22_160_1 doi: 10.1074/jbc.271.28.16690 – ident: e_1_2_22_104_1 doi: 10.1038/s42255-022-00643-4 – ident: e_1_2_22_17_1 doi: 10.1515/hsz-2013-0152 – ident: e_1_2_22_45_1 doi: 10.1038/s41418-017-0020-4 – ident: e_1_2_22_62_1 doi: 10.1523/JNEUROSCI.22-03-00782.2002 – ident: e_1_2_22_47_1 doi: 10.33594/000000245 – ident: e_1_2_22_125_1 doi: 10.1016/j.nbd.2022.105615 – ident: e_1_2_22_19_1 doi: 10.1177/0271678X18808947 – ident: e_1_2_22_213_1 doi: 10.1371/journal.pone.0109818 – ident: e_1_2_22_175_1 doi: 10.1159/000094170 – ident: e_1_2_22_89_1 doi: 10.1038/jcbfm.2011.91 – ident: e_1_2_22_192_1 doi: 10.1038/sj.jcbfm.9600297 – ident: e_1_2_22_240_1 doi: 10.1038/nn.4492 – ident: e_1_2_22_8_1 doi: 10.1042/bj2080743 – ident: e_1_2_22_26_1 doi: 10.1007/s11745-014-3882-y – ident: e_1_2_22_80_1 doi: 10.1093/brain/awab341 – ident: e_1_2_22_64_1 doi: 10.1089/neu.2009.1181 – ident: e_1_2_22_3_1 doi: 10.1038/ncb2330 – ident: e_1_2_22_53_1 doi: 10.1523/JNEUROSCI.23-13-05928.2003 – ident: e_1_2_22_51_1 doi: 10.1038/s42255-022-00619-4 – ident: e_1_2_22_233_1 doi: 10.1038/s41551-019-0393-4 – ident: e_1_2_22_84_1 doi: 10.1016/j.neuint.2017.09.003 – ident: e_1_2_22_212_1 doi: 10.1016/j.cytogfr.2022.08.006 – ident: e_1_2_22_7_1 doi: 10.15252/emmm.202217175 – ident: e_1_2_22_93_1 doi: 10.1177/0271678X211042112 – ident: e_1_2_22_18_1 doi: 10.1038/s41467-020-15267-z – ident: e_1_2_22_178_1 doi: 10.1038/s41598-018-34518-0 – ident: e_1_2_22_54_1 doi: 10.1007/BF00344388 – ident: e_1_2_22_180_1 doi: 10.1038/34178 – ident: e_1_2_22_224_1 doi: 10.1016/j.brainres.2022.147934 – ident: e_1_2_22_215_1 doi: 10.1186/s13024-019-0305-9 – ident: e_1_2_22_21_1 doi: 10.1016/j.freeradbiomed.2014.07.033 – ident: e_1_2_22_143_1 doi: 10.1016/j.bbabio.2017.12.002 – ident: e_1_2_22_234_1 doi: 10.1111/jcmm.14206 – ident: e_1_2_22_126_1 doi: 10.1038/sj.jid.5700586 – ident: e_1_2_22_42_1 doi: 10.1038/nature13490 – ident: e_1_2_22_127_1 doi: 10.1038/s41467-020-19861-z – ident: e_1_2_22_211_1 doi: 10.1016/j.stem.2022.07.005 – ident: e_1_2_22_34_1 doi: 10.1016/j.semcdb.2020.08.001 – ident: e_1_2_22_55_1 doi: 10.3389/fimmu.2022.1051514 – ident: e_1_2_22_154_1 doi: 10.1038/nri.2016.70 |
SSID | ssj0016461 |
Score | 2.5265436 |
SecondaryResourceType | review_article |
Snippet | Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 129 |
SubjectTerms | Animals Anti-Inflammatory Agents Brain Brain damage Brain Injuries, Traumatic - metabolism Environmental effects Glycolysis Head injuries Immune response Immune system Immunosurveillance Impact damage Inflammation Lipid peroxidation Lipids Macrophages Metabolic disorders Metabolic pathways Metabolism Metabolites Mice Mice, Inbred C57BL Microglia Microglia - metabolism Mitochondria Neurochemistry Neurodegeneration Neuroinflammatory Diseases Neurological diseases Oxidation Oxidative metabolism Pain perception Pentose Pentose phosphate pathway Phagocytosis Phenotypes Phenotyping Reactive oxygen species Stimuli Traumatic brain injury |
Title | Fundamental Neurochemistry Review: Microglial immunometabolism in traumatic brain injury |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37759406 https://www.proquest.com/docview/2875686041 https://www.proquest.com/docview/2870141529 https://pubmed.ncbi.nlm.nih.gov/PMC10655864 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkGAvE2x8dAxkEEJIVarEiZuEt1ExVdM6IbShvkVx4oyiNJm65AH-A_-Z688mZUiwl6iKHVvNObHvta_PRegtOGs5CT3mFKSInYDkmRPBLOWwOPO4xyLOpU7B_HwyuwxOF3QxGPzqRC21DRtnP289V3IXVOEe4CpOyf4HsrZRuAG_AV-4AsJw_SeMT8QxDq3OL1U2MpO-zajEgr8_FyF3V6VMziEOg9Qr3gDypciOIYIc12mrZFuZyBYBt763_WPSHZu16nViV2ca6KAtdQbsc7kaP_oytqOuiOctpZF61i5vRl87JaVJDPJxLUaauS06q3UQrgy6H52Ou8sTZBPo1jsu4CoJrTFXoyzMiA5YDnFvGFZpOTTfSGdQ9fSaiJqfPSUu_LehH0ZVaFg13aHA9UpywA9DGgfulvi2nM4_z6fgHlMaTYJ76D4JQ7nrP5tZb0oosXlWfB7-kRaqkoFhpttd9MD00bd0_nBftqNwO2bNxSO0p7HFx4pcj9GAV_vo4LhKm3r1A7_DMkJYbr3so4dTg_wBWnS4h_vcw4p7H_CGeXibeXhZYcs8LJmHFfOeoMuTTxfTmaOzdDhZ4AaNE4mEBj6FT7uI_VzYp56be5T5kZ9xsBdjHhe5X4hUAjnYl8JHoIT7jJHCE0IG_lO0U9UVf46wyxmYz2Cj8hT8fpqCL81SeIBFURYymg_Re_NGk0xL2ItMKmViXdkqSyQOQ_TGVr1Wui23VToysCT6s75JCPQ6iSZu4A3Ra1sML1DspAH161bWEQHSlEATzxSKthcD_xBFPXxtBSHo3i-plt-ksLvh3-HdH32Bdjdf4RHaadYtfwlmc8NeSTL_BqR6xsc |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+Neurochemistry+Review%3A+Microglial+immunometabolism+in+traumatic+brain+injury&rft.jtitle=Journal+of+neurochemistry&rft.au=Strogulski%2C+Nathan+R.&rft.au=Portela%2C+Luis+V.&rft.au=Polster%2C+Brian+M.&rft.au=Loane%2C+David+J.&rft.date=2023-10-01&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=167&rft.issue=2&rft.spage=129&rft.epage=153&rft_id=info:doi/10.1111%2Fjnc.15959&rft_id=info%3Apmid%2F37759406&rft.externalDocID=PMC10655864 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |