Fundamental Neurochemistry Review: Microglial immunometabolism in traumatic brain injury

Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microgli...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 167; no. 2; pp. 129 - 153
Main Authors Strogulski, Nathan R., Portela, Luis V., Polster, Brian M., Loane, David J.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.10.2023
Subjects
Online AccessGet full text
ISSN0022-3042
1471-4159
1471-4159
DOI10.1111/jnc.15959

Cover

Abstract Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain‐infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro‐ and anti‐inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro‐inflammatory activation is associated with decreased mitochondrial respiration, whereas anti‐inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post‐traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non‐resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post‐traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI. image
AbstractList Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain‐infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro‐ and anti‐inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro‐inflammatory activation is associated with decreased mitochondrial respiration, whereas anti‐inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post‐traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non‐resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post‐traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI.
Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI.Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI.
Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain‐infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro‐ and anti‐inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro‐inflammatory activation is associated with decreased mitochondrial respiration, whereas anti‐inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post‐traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non‐resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post‐traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI. image
Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia’s ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include, a) the nature of microglial mitochondrial dysfunction after TBI, b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions towards advancing immunometabolic phenotyping in TBI. In this fundamental neurochemistry review we examine the relationship between traumatic brain injury (TBI) and immune cell metabolism, primarily focusing on microglia. TBI leads to widespread damage and chronic neurodegeneration, with secondary brain injury involving mitochondrial dysfunction and ongoing neuroinflammation. Microglia contribute to inflammation via cytokine and reactive oxygen species production chronically post-TBI, and promote long-term neurodegeneration. Metabolic pathways in these cells regulate immune responses, with metabolic adaptations driving pro- or anti-inflammatory states. However, questions about microglial mitochondrial dysfunction, the roles of specific metabolic pathways, and how immunometabolism influences chronic neuroinflammation following TBI remain. The review explores these aspects to advance understanding of immunometabolic changes in TBI.
Author Polster, Brian M.
Strogulski, Nathan R.
Portela, Luis V.
Loane, David J.
AuthorAffiliation 1 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
3 Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
2 Neurotrauma and Biomarkers Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
AuthorAffiliation_xml – name: 2 Neurotrauma and Biomarkers Laboratory, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
– name: 1 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
– name: 3 Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
Author_xml – sequence: 1
  givenname: Nathan R.
  orcidid: 0000-0003-2166-2137
  surname: Strogulski
  fullname: Strogulski, Nathan R.
  organization: School of Biochemistry and Immunology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
– sequence: 2
  givenname: Luis V.
  orcidid: 0000-0001-6113-8466
  surname: Portela
  fullname: Portela, Luis V.
  organization: Neurotrauma and Biomarkers Laboratory Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
– sequence: 3
  givenname: Brian M.
  surname: Polster
  fullname: Polster, Brian M.
  organization: Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center University of Maryland School of Medicine Baltimore Maryland USA
– sequence: 4
  givenname: David J.
  orcidid: 0000-0003-0393-3503
  surname: Loane
  fullname: Loane, David J.
  organization: School of Biochemistry and Immunology Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland, Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center University of Maryland School of Medicine Baltimore Maryland USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37759406$$D View this record in MEDLINE/PubMed
BookMark eNptkU1LHTEUhoNY9Gpd-AdkoJu6GD0nH3NnuilFaluwLZQK7kImk9FcJolNJpb7782tVqw0m3DIk8P7sUe2ffCGkEOEEyzndOX1CYpOdFtkgXyJNS_TNlkAUFoz4HSX7KW0AsCGN7hDdtlyKToOzYJcnWc_KGf8rKbqm8kx6BvjbJrjuvph7qz5_a76anUM15MthHUu--DMrPow2eQq66s5quzUbHXVR1Vm61c5rl-TV6Oakjl4vPfJ5fnHn2ef64vvn76cfbioNQc-1y0FLpjQaMaODUW3QBhQ9Kxl2lAOnenGgY1AkQ4UBYDgghrW93REwA7YPnn_sPc2984MujiJapK30ToV1zIoK_998fZGXoc7idAI0Ta8bHj7uCGGX9mkWRb_2kyT8ibkJGm7BCzKaFfQNy_QVcjRF38bSjRtAxwLdfRc0pOWv6kX4PgBKLmmFM34hCDITaOyNCr_NFrY0xestnNJO2zc2Ok_P-4BmbmjMA
CitedBy_id crossref_primary_10_1007_s11064_024_04316_4
crossref_primary_10_1016_j_jep_2024_118621
crossref_primary_10_4103_NRR_NRR_D_24_00432
crossref_primary_10_1042_CS20230148
crossref_primary_10_1186_s40560_024_00742_2
crossref_primary_10_1007_s10753_024_02185_1
crossref_primary_10_1089_neu_2023_0650
crossref_primary_10_14336_AD_2024_1293
crossref_primary_10_1093_brain_awae305
crossref_primary_10_1016_j_expneurol_2024_115019
crossref_primary_10_1016_j_brainres_2024_148907
crossref_primary_10_1016_j_neurot_2024_e00515
crossref_primary_10_1016_j_heliyon_2024_e38018
crossref_primary_10_3390_neuroglia5020014
crossref_primary_10_4014_jmb_2409_09003
Cites_doi 10.15252/emmm.202114323
10.1016/j.yexcr.2007.06.013
10.3389/fneur.2019.00831
10.1016/j.yexcr.2015.10.026
10.1172/JCI21752
10.1038/nature11986
10.2147/JIR.S350566
10.1016/j.bbadis.2021.166078
10.1186/s12974-021-02244-6
10.1073/pnas.91.22.10625
10.1016/j.freeradbiomed.2017.09.017
10.1016/j.chom.2023.01.009
10.1016/j.imlet.2021.08.006
10.1089/neu.2015.4160
10.1074/jbc.R115.693903
10.1016/j.bbadis.2017.03.015
10.1016/j.cellimm.2021.104450
10.1038/s41590-022-01185-3
10.3390/ijms22136965
10.1002/(SICI)1098-1136(199711)21:3<327::AID-GLIA7>3.0.CO;2-1
10.3389/fnene.2013.00013
10.1038/sj.jcbfm.9600543
10.1016/j.mito.2021.01.003
10.1016/j.neuron.2022.10.020
10.3389/fimmu.2022.1013686
10.1096/fj.202101469RR
10.1186/s40635-021-00404-9
10.1111/febs.15715
10.1002/acn3.416
10.1088/1748-605X/aa9b3c
10.1016/j.atherosclerosis.2022.05.015
10.3389/fnsys.2016.00029
10.1016/j.bbi.2020.05.052
10.1002/glia.23760
10.1371/journal.pone.0072046
10.3389/fncel.2021.811061
10.1126/science.1156995
10.1016/j.neuint.2017.03.015
10.1126/science.8346443
10.1007/978-1-0716-0747-3_5
10.1016/j.jneumeth.2016.02.004
10.1038/s41598-018-29255-3
10.1016/j.expneurol.2020.113243
10.3389/fimmu.2021.770744
10.1016/j.seizure.2020.07.011
10.3389/fnagi.2022.1075161
10.1016/j.brainresrev.2008.09.002
10.1016/j.expneurol.2020.113282
10.3892/mmr.2021.12311
10.1126/scitranslmed.abe5640
10.1111/bpa.13126
10.2139/ssrn.4178538
10.1111/j.1471-4159.1977.tb10649.x
10.1242/jeb.202.2.211
10.1111/bpa.12704
10.1016/j.cell.2020.10.026
10.1186/s40478-018-0636-8
10.1016/j.neuint.2006.01.005
10.1016/j.trsl.2021.03.017
10.1016/j.expneurol.2015.05.009
10.1111/jnc.15522
10.1111/j.1471-4159.2011.07572.x
10.1186/s12964-022-00849-9
10.1523/JNEUROSCI.1539-22.2022
10.3389/fphys.2020.00012
10.5607/en21027
10.1007/s12028-022-01507-1
10.1038/s42003-021-02259-y
10.1001/jamapediatrics.2020.2282
10.1056/NEJMoa1211851
10.3390/metabo12080710
10.1038/s41467-022-29506-y
10.1007/s00125-008-1256-9
10.1038/s41598-017-11956-w
10.1042/BSR20190072
10.1089/neu.2012.2339
10.1038/nm.3804
10.1002/glia.20225
10.1038/ni.1831
10.1016/j.neuint.2021.105154
10.1016/j.jneuroim.2004.12.015
10.1002/glia.24130
10.1007/s11064-012-0901-3
10.1016/j.cmet.2012.04.023
10.1089/neu.2015.4268
10.1016/j.nbd.2013.01.018
10.1016/0140-6736(90)92083-T
10.1038/s41593-020-00757-6
10.1111/cns.13265
10.1007/3-211-32318-X_35
10.1016/j.expneurol.2015.08.018
10.1186/s12974-019-1648-4
10.1002/jcb.25074
10.1186/s12974-020-01768-7
10.1016/j.immuni.2015.02.017
10.1186/s12974-019-1659-1
10.1089/neu.2021.0096
10.1038/jcbfm.2014.243
10.1089/neu.2008.0586
10.1016/j.tins.2021.11.001
10.1016/j.mcn.2020.103569
10.1186/s12974-016-0604-9
10.1097/00004647-200207000-00014
10.1007/s12035-021-02501-y
10.1007/s10753-012-9447-4
10.1038/s42255-022-00550-8
10.1007/s11064-013-1055-7
10.1016/j.bbabio.2018.05.005
10.1002/glia.23913
10.1016/j.bbi.2020.01.012
10.1038/s41576-023-00580-2
10.3390/ijms20225774
10.1097/NEN.0000000000000021
10.1089/neu.2018.6266
10.1038/s41593-022-01199-y
10.3389/fncel.2022.939830
10.1007/s11306-022-01886-8
10.1074/jbc.M113.522037
10.1038/s42255-022-00575-z
10.1021/acs.jproteome.8b00068
10.1152/ajpcell.00276.2022
10.1186/s13024-017-0150-7
10.1074/jbc.M307657200
10.1016/j.nbd.2020.104866
10.1038/s41589-019-0462-8
10.1097/CCM.0b013e31820eda5c
10.1039/D0LC01034K
10.1038/nrneurol.2017.13
10.1089/neu.2016.4540
10.1002/cyto.a.23886
10.1089/neu.2005.22.1052
10.1177/0271678X211069006
10.1016/j.tins.2013.07.001
10.1186/s12964-018-0293-3
10.1038/s41593-019-0566-1
10.1073/pnas.90.5.1977
10.1038/ni.3796
10.1007/s10571-022-01299-0
10.1016/j.cmet.2016.10.008
10.1111/j.1471-4159.2006.03758.x
10.1007/s11064-020-03156-2
10.4049/jimmunol.161.2.978
10.1016/j.cmet.2019.06.005
10.3389/fimmu.2022.942768
10.1016/j.neulet.2007.11.033
10.1016/j.immuni.2015.02.005
10.1038/nri2725
10.1016/j.seizure.2014.06.005
10.1016/j.molimm.2021.10.017
10.1016/j.neurobiolaging.2007.09.001
10.1186/s12974-014-0230-3
10.3390/ijms231710184
10.1523/JNEUROSCI.2402-19.2020
10.1016/j.cmet.2020.07.015
10.1186/s13024-022-00547-7
10.1046/j.1471-4159.2002.00990.x
10.1002/1873-3468.13298
10.1124/mol.106.033845
10.1093/braincomms/fcad032
10.1155/2017/6057609
10.1016/j.expneurol.2017.01.004
10.3390/cells10113147
10.1038/s41598-021-92436-0
10.1038/s41467-020-14433-7
10.1089/neu.2020.7379
10.1038/sj.npp.1301381
10.1016/j.bbi.2016.07.158
10.1038/s41598-017-01149-w
10.1016/j.cmet.2020.07.016
10.1046/j.1460-9568.2001.01418.x
10.1016/j.neuroimage.2018.12.033
10.1186/s12974-021-02187-y
10.1111/j.1582-4934.2007.00144.x
10.3390/metabo12040322
10.1016/j.tips.2010.09.005
10.1016/j.neuron.2019.12.007
10.1038/s41467-019-10626-x
10.1016/j.brainres.2012.12.022
10.1007/s10863-021-09878-4
10.1016/S1474-4422(17)30371-X
10.1186/s13024-020-00394-4
10.1021/acs.jmedchem.2c01359
10.3171/2019.6.JNS1954
10.1182/blood-2007-06-096222
10.1126/sciadv.abi8602
10.1126/sciadv.add1101
10.1007/s11064-015-1600-7
10.1089/neur.2021.0021
10.1089/neu.2006.3673
10.1016/j.eplepsyres.2014.09.033
10.1080/1028415X.2020.1853414
10.1093/brain/awab255
10.1089/neu.2018.5663
10.3390/ijms22052578
10.1074/jbc.271.28.16690
10.1038/s42255-022-00643-4
10.1515/hsz-2013-0152
10.1038/s41418-017-0020-4
10.1523/JNEUROSCI.22-03-00782.2002
10.33594/000000245
10.1016/j.nbd.2022.105615
10.1177/0271678X18808947
10.1371/journal.pone.0109818
10.1159/000094170
10.1038/jcbfm.2011.91
10.1038/sj.jcbfm.9600297
10.1038/nn.4492
10.1042/bj2080743
10.1007/s11745-014-3882-y
10.1093/brain/awab341
10.1089/neu.2009.1181
10.1038/ncb2330
10.1523/JNEUROSCI.23-13-05928.2003
10.1038/s42255-022-00619-4
10.1038/s41551-019-0393-4
10.1016/j.neuint.2017.09.003
10.1016/j.cytogfr.2022.08.006
10.15252/emmm.202217175
10.1177/0271678X211042112
10.1038/s41467-020-15267-z
10.1038/s41598-018-34518-0
10.1007/BF00344388
10.1038/34178
10.1016/j.brainres.2022.147934
10.1186/s13024-019-0305-9
10.1016/j.freeradbiomed.2014.07.033
10.1016/j.bbabio.2017.12.002
10.1111/jcmm.14206
10.1038/sj.jid.5700586
10.1038/nature13490
10.1038/s41467-020-19861-z
10.1016/j.stem.2022.07.005
10.1016/j.semcdb.2020.08.001
10.3389/fimmu.2022.1051514
10.1038/nri.2016.70
ContentType Journal Article
Copyright 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
DOI 10.1111/jnc.15959
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 153
ExternalDocumentID PMC10655864
37759406
10_1111_jnc_15959
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS082308
– fundername: NINDS NIH HHS
  grantid: R01 NS122777
– fundername: NINDS NIH HHS
  grantid: R01 NS112212
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CITATION
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
5PM
ID FETCH-LOGICAL-c404t-8204535c1ef93d415510d15b383ce2409e9fd3f0212d215005452e3bb2f101903
ISSN 0022-3042
1471-4159
IngestDate Thu Aug 21 18:31:03 EDT 2025
Thu Jul 10 22:20:12 EDT 2025
Fri Jul 25 11:02:55 EDT 2025
Mon Jul 21 05:48:09 EDT 2025
Tue Jul 01 04:39:43 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords traumatic brain injury
neuroimmunology
metabolism
microglia
mitochondria
Language English
License 2023 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c404t-8204535c1ef93d415510d15b383ce2409e9fd3f0212d215005452e3bb2f101903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
No
Brian M. Polster, PhD Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, 685 W. Baltimore St., MSTF 5-34, Baltimore, MD 21201, USA, bpolster@som.umaryland.edu
"All experiments were conducted in compliance with the ARRIVE guidelines." unless it is a Review or Editorial
NRS: Conceptualization, Writing - Original Draft, Writing - Review & Editing, Funding acquisition. LVP: Writing - Review & Editing, Funding acquisition. BMP: Writing - Review & Editing, Funding acquisition. DJL: Conceptualization, Writing - Original Draft, Writing - Review & Editing, Funding acquisition.
if it is a Review or Editorial, skip complete sentence
Author contribution statement
Author contributions--
NA
if No, include a statement in the "Conflict of interest disclosure" section: "ARRIVE guidelines were not followed for the following reason
ARRIVE guidelines have been followed
(edit phrasing to form a complete sentence as necessary).
Luis Valmor Portela, PhD, Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Ramiro Barcelos 2600, anexo, Bairro Santana, Porto Alegre, RS, Brasil, roskaportela@gmail.com
if Yes, insert in the "Conflict of interest disclosure" section
ORCID 0000-0001-6113-8466
0000-0003-2166-2137
0000-0003-0393-3503
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jnc.15959
PMID 37759406
PQID 2875686041
PQPubID 31528
PageCount 25
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10655864
proquest_miscellaneous_2870141529
proquest_journals_2875686041
pubmed_primary_37759406
crossref_primary_10_1111_jnc_15959
crossref_citationtrail_10_1111_jnc_15959
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References e_1_2_22_90_1
e_1_2_22_217_1
e_1_2_22_172_1
e_1_2_22_75_1
e_1_2_22_98_1
e_1_2_22_111_1
e_1_2_22_157_1
e_1_2_22_195_1
e_1_2_22_26_1
e_1_2_22_134_1
e_1_2_22_14_1
e_1_2_22_108_1
e_1_2_22_52_1
e_1_2_22_220_1
e_1_2_22_205_1
e_1_2_22_206_1
e_1_2_22_229_1
e_1_2_22_183_1
e_1_2_22_160_1
e_1_2_22_64_1
e_1_2_22_87_1
e_1_2_22_122_1
e_1_2_22_168_1
e_1_2_22_15_1
e_1_2_22_38_1
e_1_2_22_5_1
e_1_2_22_145_1
e_1_2_22_119_1
e_1_2_22_41_1
e_1_2_22_232_1
e_1_2_22_239_1
e_1_2_22_171_1
e_1_2_22_74_1
e_1_2_22_97_1
e_1_2_22_110_1
e_1_2_22_133_1
e_1_2_22_156_1
e_1_2_22_179_1
e_1_2_22_194_1
e_1_2_22_48_1
e_1_2_22_13_1
e_1_2_22_36_1
e_1_2_22_107_1
e_1_2_22_51_1
e_1_2_22_204_1
e_1_2_22_227_1
e_1_2_22_228_1
e_1_2_22_182_1
e_1_2_22_63_1
e_1_2_22_86_1
e_1_2_22_121_1
e_1_2_22_144_1
e_1_2_22_167_1
e_1_2_22_4_1
e_1_2_22_37_1
e_1_2_22_25_1
e_1_2_22_118_1
e_1_2_22_40_1
e_1_2_22_231_1
e_1_2_22_216_1
e_1_2_22_219_1
e_1_2_22_174_1
e_1_2_22_151_1
e_1_2_22_73_1
e_1_2_22_96_1
e_1_2_22_136_1
e_1_2_22_159_1
e_1_2_22_58_1
e_1_2_22_113_1
e_1_2_22_197_1
e_1_2_22_35_1
e_1_2_22_12_1
e_1_2_22_50_1
e_1_2_22_222_1
e_1_2_22_208_1
e_1_2_22_185_1
e_1_2_22_162_1
e_1_2_22_62_1
e_1_2_22_85_1
e_1_2_22_3_1
e_1_2_22_101_1
e_1_2_22_124_1
e_1_2_22_24_1
e_1_2_22_47_1
e_1_2_22_59_1
e_1_2_22_211_1
e_1_2_22_234_1
e_1_2_22_150_1
e_1_2_22_173_1
e_1_2_22_218_1
e_1_2_22_72_1
e_1_2_22_95_1
e_1_2_22_158_1
e_1_2_22_57_1
e_1_2_22_112_1
e_1_2_22_135_1
e_1_2_22_196_1
e_1_2_22_11_1
e_1_2_22_34_1
e_1_2_22_109_1
e_1_2_22_221_1
e_1_2_22_161_1
e_1_2_22_184_1
e_1_2_22_207_1
e_1_2_22_61_1
e_1_2_22_2_1
e_1_2_22_84_1
e_1_2_22_169_1
e_1_2_22_100_1
e_1_2_22_123_1
e_1_2_22_69_1
e_1_2_22_46_1
e_1_2_22_23_1
e_1_2_22_233_1
e_1_2_22_210_1
e_1_2_22_153_1
e_1_2_22_199_1
e_1_2_22_130_1
e_1_2_22_71_1
e_1_2_22_94_1
Di Cara F. (e_1_2_22_49_1) 2017; 47
e_1_2_22_115_1
e_1_2_22_191_1
e_1_2_22_138_1
e_1_2_22_79_1
e_1_2_22_176_1
e_1_2_22_56_1
e_1_2_22_33_1
e_1_2_22_10_1
e_1_2_22_201_1
e_1_2_22_224_1
e_1_2_22_164_1
e_1_2_22_141_1
e_1_2_22_60_1
e_1_2_22_83_1
e_1_2_22_103_1
e_1_2_22_126_1
e_1_2_22_19_1
e_1_2_22_149_1
e_1_2_22_68_1
Nedel W. L. (e_1_2_22_146_1) 2022; 66
e_1_2_22_187_1
e_1_2_22_22_1
e_1_2_22_45_1
e_1_2_22_213_1
e_1_2_22_236_1
Lin Y. T. (e_1_2_22_106_1) 2018; 98
e_1_2_22_152_1
e_1_2_22_175_1
e_1_2_22_198_1
e_1_2_22_70_1
e_1_2_22_93_1
e_1_2_22_114_1
e_1_2_22_137_1
e_1_2_22_190_1
e_1_2_22_29_1
e_1_2_22_78_1
Newsholme E. A. (e_1_2_22_147_1) 1987; 54
e_1_2_22_9_1
e_1_2_22_55_1
e_1_2_22_32_1
e_1_2_22_200_1
e_1_2_22_223_1
e_1_2_22_140_1
e_1_2_22_163_1
e_1_2_22_186_1
e_1_2_22_209_1
e_1_2_22_82_1
e_1_2_22_148_1
e_1_2_22_125_1
e_1_2_22_18_1
e_1_2_22_67_1
e_1_2_22_102_1
e_1_2_22_44_1
e_1_2_22_21_1
e_1_2_22_212_1
e_1_2_22_235_1
e_1_2_22_92_1
e_1_2_22_170_1
e_1_2_22_117_1
e_1_2_22_193_1
e_1_2_22_28_1
e_1_2_22_77_1
e_1_2_22_132_1
e_1_2_22_178_1
e_1_2_22_155_1
e_1_2_22_8_1
e_1_2_22_54_1
e_1_2_22_31_1
e_1_2_22_129_1
e_1_2_22_226_1
e_1_2_22_203_1
e_1_2_22_120_1
e_1_2_22_81_1
e_1_2_22_181_1
e_1_2_22_105_1
e_1_2_22_128_1
e_1_2_22_17_1
e_1_2_22_66_1
e_1_2_22_89_1
e_1_2_22_7_1
e_1_2_22_143_1
e_1_2_22_189_1
e_1_2_22_166_1
e_1_2_22_20_1
e_1_2_22_43_1
e_1_2_22_230_1
e_1_2_22_215_1
e_1_2_22_238_1
e_1_2_22_131_1
e_1_2_22_91_1
e_1_2_22_116_1
e_1_2_22_139_1
e_1_2_22_192_1
e_1_2_22_76_1
e_1_2_22_99_1
e_1_2_22_154_1
e_1_2_22_177_1
e_1_2_22_27_1
e_1_2_22_53_1
e_1_2_22_240_1
e_1_2_22_30_1
e_1_2_22_202_1
e_1_2_22_225_1
e_1_2_22_142_1
e_1_2_22_80_1
e_1_2_22_180_1
e_1_2_22_104_1
e_1_2_22_65_1
e_1_2_22_127_1
e_1_2_22_6_1
e_1_2_22_39_1
e_1_2_22_88_1
e_1_2_22_165_1
e_1_2_22_188_1
e_1_2_22_16_1
e_1_2_22_42_1
e_1_2_22_237_1
e_1_2_22_214_1
References_xml – ident: e_1_2_22_75_1
  doi: 10.15252/emmm.202114323
– ident: e_1_2_22_144_1
  doi: 10.1016/j.yexcr.2007.06.013
– ident: e_1_2_22_159_1
  doi: 10.3389/fneur.2019.00831
– ident: e_1_2_22_225_1
  doi: 10.1016/j.yexcr.2015.10.026
– ident: e_1_2_22_217_1
  doi: 10.1172/JCI21752
– ident: e_1_2_22_204_1
  doi: 10.1038/nature11986
– ident: e_1_2_22_232_1
  doi: 10.2147/JIR.S350566
– ident: e_1_2_22_161_1
  doi: 10.1016/j.bbadis.2021.166078
– ident: e_1_2_22_38_1
  doi: 10.1186/s12974-021-02244-6
– ident: e_1_2_22_169_1
  doi: 10.1073/pnas.91.22.10625
– ident: e_1_2_22_214_1
  doi: 10.1016/j.freeradbiomed.2017.09.017
– ident: e_1_2_22_25_1
  doi: 10.1016/j.chom.2023.01.009
– ident: e_1_2_22_12_1
  doi: 10.1016/j.imlet.2021.08.006
– ident: e_1_2_22_138_1
  doi: 10.1089/neu.2015.4160
– volume: 54
  start-page: 145
  year: 1987
  ident: e_1_2_22_147_1
  article-title: The role of the citric acid cycle in cells of the immune system and its importance in sepsis, trauma and burns
  publication-title: Biochemical Society Symposium
– ident: e_1_2_22_116_1
  doi: 10.1074/jbc.R115.693903
– ident: e_1_2_22_5_1
  doi: 10.1016/j.bbadis.2017.03.015
– ident: e_1_2_22_200_1
  doi: 10.1016/j.cellimm.2021.104450
– ident: e_1_2_22_20_1
  doi: 10.1038/s41590-022-01185-3
– ident: e_1_2_22_107_1
  doi: 10.3390/ijms22136965
– ident: e_1_2_22_168_1
  doi: 10.1002/(SICI)1098-1136(199711)21:3<327::AID-GLIA7>3.0.CO;2-1
– ident: e_1_2_22_27_1
  doi: 10.3389/fnene.2013.00013
– ident: e_1_2_22_174_1
  doi: 10.1038/sj.jcbfm.9600543
– ident: e_1_2_22_37_1
  doi: 10.1016/j.mito.2021.01.003
– ident: e_1_2_22_166_1
  doi: 10.1016/j.neuron.2022.10.020
– ident: e_1_2_22_238_1
  doi: 10.3389/fimmu.2022.1013686
– ident: e_1_2_22_79_1
  doi: 10.1096/fj.202101469RR
– ident: e_1_2_22_145_1
  doi: 10.1186/s40635-021-00404-9
– ident: e_1_2_22_94_1
  doi: 10.1111/febs.15715
– ident: e_1_2_22_196_1
  doi: 10.1002/acn3.416
– ident: e_1_2_22_190_1
  doi: 10.1088/1748-605X/aa9b3c
– ident: e_1_2_22_155_1
  doi: 10.1016/j.atherosclerosis.2022.05.015
– ident: e_1_2_22_56_1
  doi: 10.3389/fnsys.2016.00029
– ident: e_1_2_22_35_1
  doi: 10.1016/j.bbi.2020.05.052
– ident: e_1_2_22_78_1
  doi: 10.1002/glia.23760
– ident: e_1_2_22_61_1
  doi: 10.1371/journal.pone.0072046
– ident: e_1_2_22_90_1
  doi: 10.3389/fncel.2021.811061
– volume: 66
  start-page: 7
  year: 2022
  ident: e_1_2_22_146_1
  article-title: Short‐term inflammatory biomarkers profile are associated with deficient mitochondrial bioenergetics in lymphocytes of septic shock patients—a prospective cohort study
  publication-title: Shock
– volume: 47
  issue: 93
  year: 2017
  ident: e_1_2_22_49_1
  article-title: Peroxisome‐mediated metabolism is required for immune response to microbial infection
  publication-title: Immunity
– ident: e_1_2_22_52_1
  doi: 10.1126/science.1156995
– ident: e_1_2_22_74_1
  doi: 10.1016/j.neuint.2017.03.015
– ident: e_1_2_22_46_1
  doi: 10.1126/science.8346443
– ident: e_1_2_22_158_1
  doi: 10.1007/978-1-0716-0747-3_5
– ident: e_1_2_22_182_1
  doi: 10.1016/j.jneumeth.2016.02.004
– ident: e_1_2_22_198_1
  doi: 10.1038/s41598-018-29255-3
– ident: e_1_2_22_227_1
  doi: 10.1016/j.expneurol.2020.113243
– ident: e_1_2_22_220_1
  doi: 10.3389/fimmu.2021.770744
– ident: e_1_2_22_216_1
  doi: 10.1016/j.seizure.2020.07.011
– ident: e_1_2_22_201_1
  doi: 10.3389/fnagi.2022.1075161
– ident: e_1_2_22_123_1
  doi: 10.1016/j.brainresrev.2008.09.002
– ident: e_1_2_22_85_1
  doi: 10.1016/j.expneurol.2020.113282
– ident: e_1_2_22_223_1
  doi: 10.3892/mmr.2021.12311
– ident: e_1_2_22_221_1
  doi: 10.1126/scitranslmed.abe5640
– ident: e_1_2_22_222_1
  doi: 10.1111/bpa.13126
– ident: e_1_2_22_134_1
  doi: 10.2139/ssrn.4178538
– ident: e_1_2_22_193_1
  doi: 10.1111/j.1471-4159.1977.tb10649.x
– ident: e_1_2_22_102_1
  doi: 10.1242/jeb.202.2.211
– ident: e_1_2_22_131_1
  doi: 10.1111/bpa.12704
– ident: e_1_2_22_111_1
  doi: 10.1016/j.cell.2020.10.026
– ident: e_1_2_22_151_1
  doi: 10.1186/s40478-018-0636-8
– ident: e_1_2_22_195_1
  doi: 10.1016/j.neuint.2006.01.005
– ident: e_1_2_22_235_1
  doi: 10.1016/j.trsl.2021.03.017
– ident: e_1_2_22_95_1
  doi: 10.1016/j.expneurol.2015.05.009
– ident: e_1_2_22_31_1
  doi: 10.1111/jnc.15522
– ident: e_1_2_22_39_1
  doi: 10.1111/j.1471-4159.2011.07572.x
– ident: e_1_2_22_137_1
  doi: 10.1186/s12964-022-00849-9
– ident: e_1_2_22_108_1
  doi: 10.1523/JNEUROSCI.1539-22.2022
– ident: e_1_2_22_82_1
  doi: 10.3389/fphys.2020.00012
– ident: e_1_2_22_65_1
  doi: 10.5607/en21027
– ident: e_1_2_22_185_1
  doi: 10.1007/s12028-022-01507-1
– ident: e_1_2_22_68_1
  doi: 10.1038/s42003-021-02259-y
– ident: e_1_2_22_194_1
  doi: 10.1001/jamapediatrics.2020.2282
– ident: e_1_2_22_67_1
  doi: 10.1056/NEJMoa1211851
– ident: e_1_2_22_187_1
  doi: 10.3390/metabo12080710
– ident: e_1_2_22_70_1
  doi: 10.1038/s41467-022-29506-y
– ident: e_1_2_22_43_1
  doi: 10.1007/s00125-008-1256-9
– ident: e_1_2_22_186_1
  doi: 10.1038/s41598-017-11956-w
– ident: e_1_2_22_33_1
  doi: 10.1042/BSR20190072
– ident: e_1_2_22_14_1
  doi: 10.1089/neu.2012.2339
– ident: e_1_2_22_229_1
  doi: 10.1038/nm.3804
– ident: e_1_2_22_176_1
  doi: 10.1002/glia.20225
– ident: e_1_2_22_239_1
  doi: 10.1038/ni.1831
– ident: e_1_2_22_40_1
  doi: 10.1016/j.neuint.2021.105154
– ident: e_1_2_22_197_1
  doi: 10.1016/j.jneuroim.2004.12.015
– ident: e_1_2_22_210_1
  doi: 10.1002/glia.24130
– ident: e_1_2_22_132_1
  doi: 10.1007/s11064-012-0901-3
– ident: e_1_2_22_71_1
  doi: 10.1016/j.cmet.2012.04.023
– ident: e_1_2_22_98_1
  doi: 10.1089/neu.2015.4268
– ident: e_1_2_22_92_1
  doi: 10.1016/j.nbd.2013.01.018
– ident: e_1_2_22_167_1
  doi: 10.1016/0140-6736(90)92083-T
– ident: e_1_2_22_16_1
  doi: 10.1038/s41593-020-00757-6
– ident: e_1_2_22_170_1
  doi: 10.1111/cns.13265
– ident: e_1_2_22_150_1
  doi: 10.1007/3-211-32318-X_35
– ident: e_1_2_22_114_1
  doi: 10.1016/j.expneurol.2015.08.018
– ident: e_1_2_22_97_1
  doi: 10.1186/s12974-019-1648-4
– ident: e_1_2_22_142_1
  doi: 10.1002/jcb.25074
– ident: e_1_2_22_100_1
  doi: 10.1186/s12974-020-01768-7
– ident: e_1_2_22_153_1
  doi: 10.1016/j.immuni.2015.02.017
– ident: e_1_2_22_207_1
  doi: 10.1186/s12974-019-1659-1
– ident: e_1_2_22_48_1
  doi: 10.1089/neu.2021.0096
– ident: e_1_2_22_60_1
  doi: 10.1038/jcbfm.2014.243
– ident: e_1_2_22_183_1
  doi: 10.1089/neu.2008.0586
– ident: e_1_2_22_184_1
  doi: 10.1016/j.tins.2021.11.001
– ident: e_1_2_22_117_1
  doi: 10.1016/j.mcn.2020.103569
– ident: e_1_2_22_83_1
  doi: 10.1186/s12974-016-0604-9
– ident: e_1_2_22_163_1
  doi: 10.1097/00004647-200207000-00014
– ident: e_1_2_22_140_1
  doi: 10.1007/s12035-021-02501-y
– ident: e_1_2_22_179_1
  doi: 10.1007/s10753-012-9447-4
– ident: e_1_2_22_24_1
  doi: 10.1038/s42255-022-00550-8
– ident: e_1_2_22_230_1
  doi: 10.1007/s11064-013-1055-7
– ident: e_1_2_22_139_1
  doi: 10.1016/j.bbabio.2018.05.005
– ident: e_1_2_22_228_1
  doi: 10.1002/glia.23913
– ident: e_1_2_22_135_1
  doi: 10.1016/j.bbi.2020.01.012
– ident: e_1_2_22_208_1
  doi: 10.1038/s41576-023-00580-2
– ident: e_1_2_22_103_1
  doi: 10.3390/ijms20225774
– ident: e_1_2_22_115_1
  doi: 10.1097/NEN.0000000000000021
– ident: e_1_2_22_30_1
  doi: 10.1089/neu.2018.6266
– ident: e_1_2_22_231_1
  doi: 10.1038/s41593-022-01199-y
– ident: e_1_2_22_152_1
  doi: 10.3389/fncel.2022.939830
– ident: e_1_2_22_9_1
  doi: 10.1007/s11306-022-01886-8
– ident: e_1_2_22_58_1
  doi: 10.1074/jbc.M113.522037
– ident: e_1_2_22_110_1
  doi: 10.1038/s42255-022-00575-z
– ident: e_1_2_22_76_1
  doi: 10.1021/acs.jproteome.8b00068
– volume: 98
  issue: 1141
  year: 2018
  ident: e_1_2_22_106_1
  article-title: APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC‐derived brain cell types
  publication-title: Neuron
– ident: e_1_2_22_50_1
  doi: 10.1152/ajpcell.00276.2022
– ident: e_1_2_22_122_1
  doi: 10.1186/s13024-017-0150-7
– ident: e_1_2_22_177_1
  doi: 10.1074/jbc.M307657200
– ident: e_1_2_22_209_1
  doi: 10.1016/j.nbd.2020.104866
– ident: e_1_2_22_91_1
  doi: 10.1038/s41589-019-0462-8
– ident: e_1_2_22_87_1
  doi: 10.1097/CCM.0b013e31820eda5c
– ident: e_1_2_22_172_1
  doi: 10.1039/D0LC01034K
– ident: e_1_2_22_191_1
  doi: 10.1038/nrneurol.2017.13
– ident: e_1_2_22_22_1
  doi: 10.1089/neu.2016.4540
– ident: e_1_2_22_157_1
  doi: 10.1002/cyto.a.23886
– ident: e_1_2_22_15_1
  doi: 10.1089/neu.2005.22.1052
– ident: e_1_2_22_188_1
  doi: 10.1177/0271678X211069006
– ident: e_1_2_22_136_1
  doi: 10.1016/j.tins.2013.07.001
– ident: e_1_2_22_189_1
  doi: 10.1186/s12964-018-0293-3
– ident: e_1_2_22_129_1
  doi: 10.1038/s41593-019-0566-1
– ident: e_1_2_22_199_1
  doi: 10.1073/pnas.90.5.1977
– ident: e_1_2_22_109_1
  doi: 10.1038/ni.3796
– ident: e_1_2_22_2_1
  doi: 10.1007/s10571-022-01299-0
– ident: e_1_2_22_10_1
  doi: 10.1016/j.cmet.2016.10.008
– ident: e_1_2_22_118_1
  doi: 10.1111/j.1471-4159.2006.03758.x
– ident: e_1_2_22_96_1
  doi: 10.1007/s11064-020-03156-2
– ident: e_1_2_22_44_1
  doi: 10.4049/jimmunol.161.2.978
– ident: e_1_2_22_13_1
  doi: 10.1016/j.cmet.2019.06.005
– ident: e_1_2_22_119_1
  doi: 10.3389/fimmu.2022.942768
– ident: e_1_2_22_156_1
  doi: 10.1016/j.neulet.2007.11.033
– ident: e_1_2_22_88_1
  doi: 10.1016/j.immuni.2015.02.005
– ident: e_1_2_22_206_1
  doi: 10.1038/nri2725
– ident: e_1_2_22_29_1
  doi: 10.1016/j.seizure.2014.06.005
– ident: e_1_2_22_105_1
  doi: 10.1016/j.molimm.2021.10.017
– ident: e_1_2_22_112_1
  doi: 10.1016/j.neurobiolaging.2007.09.001
– ident: e_1_2_22_59_1
  doi: 10.1186/s12974-014-0230-3
– ident: e_1_2_22_205_1
  doi: 10.3390/ijms231710184
– ident: e_1_2_22_72_1
  doi: 10.1523/JNEUROSCI.2402-19.2020
– ident: e_1_2_22_41_1
  doi: 10.1016/j.cmet.2020.07.015
– ident: e_1_2_22_219_1
  doi: 10.1186/s13024-022-00547-7
– ident: e_1_2_22_23_1
  doi: 10.1046/j.1471-4159.2002.00990.x
– ident: e_1_2_22_128_1
  doi: 10.1002/1873-3468.13298
– ident: e_1_2_22_63_1
  doi: 10.1124/mol.106.033845
– ident: e_1_2_22_81_1
  doi: 10.1093/braincomms/fcad032
– ident: e_1_2_22_121_1
  doi: 10.1155/2017/6057609
– ident: e_1_2_22_218_1
  doi: 10.1016/j.expneurol.2017.01.004
– ident: e_1_2_22_11_1
  doi: 10.3390/cells10113147
– ident: e_1_2_22_202_1
  doi: 10.1038/s41598-021-92436-0
– ident: e_1_2_22_162_1
  doi: 10.1038/s41467-020-14433-7
– ident: e_1_2_22_164_1
  doi: 10.1089/neu.2020.7379
– ident: e_1_2_22_236_1
  doi: 10.1038/sj.npp.1301381
– ident: e_1_2_22_99_1
  doi: 10.1016/j.bbi.2016.07.158
– ident: e_1_2_22_66_1
  doi: 10.1038/s41598-017-01149-w
– ident: e_1_2_22_77_1
  doi: 10.1016/j.cmet.2020.07.016
– ident: e_1_2_22_141_1
  doi: 10.1046/j.1460-9568.2001.01418.x
– ident: e_1_2_22_86_1
  doi: 10.1016/j.neuroimage.2018.12.033
– ident: e_1_2_22_36_1
  doi: 10.1186/s12974-021-02187-y
– ident: e_1_2_22_237_1
  doi: 10.1111/j.1582-4934.2007.00144.x
– ident: e_1_2_22_6_1
  doi: 10.3390/metabo12040322
– ident: e_1_2_22_113_1
  doi: 10.1016/j.tips.2010.09.005
– ident: e_1_2_22_149_1
  doi: 10.1016/j.neuron.2019.12.007
– ident: e_1_2_22_130_1
  doi: 10.1038/s41467-019-10626-x
– ident: e_1_2_22_69_1
  doi: 10.1016/j.brainres.2012.12.022
– ident: e_1_2_22_171_1
  doi: 10.1007/s10863-021-09878-4
– ident: e_1_2_22_124_1
  doi: 10.1016/S1474-4422(17)30371-X
– ident: e_1_2_22_57_1
  doi: 10.1186/s13024-020-00394-4
– ident: e_1_2_22_173_1
  doi: 10.1021/acs.jmedchem.2c01359
– ident: e_1_2_22_226_1
  doi: 10.3171/2019.6.JNS1954
– ident: e_1_2_22_203_1
  doi: 10.1182/blood-2007-06-096222
– ident: e_1_2_22_148_1
  doi: 10.1126/sciadv.abi8602
– ident: e_1_2_22_181_1
  doi: 10.1126/sciadv.add1101
– ident: e_1_2_22_133_1
  doi: 10.1007/s11064-015-1600-7
– ident: e_1_2_22_32_1
  doi: 10.1089/neur.2021.0021
– ident: e_1_2_22_165_1
  doi: 10.1089/neu.2006.3673
– ident: e_1_2_22_28_1
  doi: 10.1016/j.eplepsyres.2014.09.033
– ident: e_1_2_22_4_1
  doi: 10.1080/1028415X.2020.1853414
– ident: e_1_2_22_73_1
  doi: 10.1093/brain/awab255
– ident: e_1_2_22_120_1
  doi: 10.1089/neu.2018.5663
– ident: e_1_2_22_101_1
  doi: 10.3390/ijms22052578
– ident: e_1_2_22_160_1
  doi: 10.1074/jbc.271.28.16690
– ident: e_1_2_22_104_1
  doi: 10.1038/s42255-022-00643-4
– ident: e_1_2_22_17_1
  doi: 10.1515/hsz-2013-0152
– ident: e_1_2_22_45_1
  doi: 10.1038/s41418-017-0020-4
– ident: e_1_2_22_62_1
  doi: 10.1523/JNEUROSCI.22-03-00782.2002
– ident: e_1_2_22_47_1
  doi: 10.33594/000000245
– ident: e_1_2_22_125_1
  doi: 10.1016/j.nbd.2022.105615
– ident: e_1_2_22_19_1
  doi: 10.1177/0271678X18808947
– ident: e_1_2_22_213_1
  doi: 10.1371/journal.pone.0109818
– ident: e_1_2_22_175_1
  doi: 10.1159/000094170
– ident: e_1_2_22_89_1
  doi: 10.1038/jcbfm.2011.91
– ident: e_1_2_22_192_1
  doi: 10.1038/sj.jcbfm.9600297
– ident: e_1_2_22_240_1
  doi: 10.1038/nn.4492
– ident: e_1_2_22_8_1
  doi: 10.1042/bj2080743
– ident: e_1_2_22_26_1
  doi: 10.1007/s11745-014-3882-y
– ident: e_1_2_22_80_1
  doi: 10.1093/brain/awab341
– ident: e_1_2_22_64_1
  doi: 10.1089/neu.2009.1181
– ident: e_1_2_22_3_1
  doi: 10.1038/ncb2330
– ident: e_1_2_22_53_1
  doi: 10.1523/JNEUROSCI.23-13-05928.2003
– ident: e_1_2_22_51_1
  doi: 10.1038/s42255-022-00619-4
– ident: e_1_2_22_233_1
  doi: 10.1038/s41551-019-0393-4
– ident: e_1_2_22_84_1
  doi: 10.1016/j.neuint.2017.09.003
– ident: e_1_2_22_212_1
  doi: 10.1016/j.cytogfr.2022.08.006
– ident: e_1_2_22_7_1
  doi: 10.15252/emmm.202217175
– ident: e_1_2_22_93_1
  doi: 10.1177/0271678X211042112
– ident: e_1_2_22_18_1
  doi: 10.1038/s41467-020-15267-z
– ident: e_1_2_22_178_1
  doi: 10.1038/s41598-018-34518-0
– ident: e_1_2_22_54_1
  doi: 10.1007/BF00344388
– ident: e_1_2_22_180_1
  doi: 10.1038/34178
– ident: e_1_2_22_224_1
  doi: 10.1016/j.brainres.2022.147934
– ident: e_1_2_22_215_1
  doi: 10.1186/s13024-019-0305-9
– ident: e_1_2_22_21_1
  doi: 10.1016/j.freeradbiomed.2014.07.033
– ident: e_1_2_22_143_1
  doi: 10.1016/j.bbabio.2017.12.002
– ident: e_1_2_22_234_1
  doi: 10.1111/jcmm.14206
– ident: e_1_2_22_126_1
  doi: 10.1038/sj.jid.5700586
– ident: e_1_2_22_42_1
  doi: 10.1038/nature13490
– ident: e_1_2_22_127_1
  doi: 10.1038/s41467-020-19861-z
– ident: e_1_2_22_211_1
  doi: 10.1016/j.stem.2022.07.005
– ident: e_1_2_22_34_1
  doi: 10.1016/j.semcdb.2020.08.001
– ident: e_1_2_22_55_1
  doi: 10.3389/fimmu.2022.1051514
– ident: e_1_2_22_154_1
  doi: 10.1038/nri.2016.70
SSID ssj0016461
Score 2.5265436
SecondaryResourceType review_article
Snippet Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 129
SubjectTerms Animals
Anti-Inflammatory Agents
Brain
Brain damage
Brain Injuries, Traumatic - metabolism
Environmental effects
Glycolysis
Head injuries
Immune response
Immune system
Immunosurveillance
Impact damage
Inflammation
Lipid peroxidation
Lipids
Macrophages
Metabolic disorders
Metabolic pathways
Metabolism
Metabolites
Mice
Mice, Inbred C57BL
Microglia
Microglia - metabolism
Mitochondria
Neurochemistry
Neurodegeneration
Neuroinflammatory Diseases
Neurological diseases
Oxidation
Oxidative metabolism
Pain perception
Pentose
Pentose phosphate pathway
Phagocytosis
Phenotypes
Phenotyping
Reactive oxygen species
Stimuli
Traumatic brain injury
Title Fundamental Neurochemistry Review: Microglial immunometabolism in traumatic brain injury
URI https://www.ncbi.nlm.nih.gov/pubmed/37759406
https://www.proquest.com/docview/2875686041
https://www.proquest.com/docview/2870141529
https://pubmed.ncbi.nlm.nih.gov/PMC10655864
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkGAvE2x8dAxkEEJIVarEiZuEt1ExVdM6IbShvkVx4oyiNJm65AH-A_-Z688mZUiwl6iKHVvNObHvta_PRegtOGs5CT3mFKSInYDkmRPBLOWwOPO4xyLOpU7B_HwyuwxOF3QxGPzqRC21DRtnP289V3IXVOEe4CpOyf4HsrZRuAG_AV-4AsJw_SeMT8QxDq3OL1U2MpO-zajEgr8_FyF3V6VMziEOg9Qr3gDypciOIYIc12mrZFuZyBYBt763_WPSHZu16nViV2ca6KAtdQbsc7kaP_oytqOuiOctpZF61i5vRl87JaVJDPJxLUaauS06q3UQrgy6H52Ou8sTZBPo1jsu4CoJrTFXoyzMiA5YDnFvGFZpOTTfSGdQ9fSaiJqfPSUu_LehH0ZVaFg13aHA9UpywA9DGgfulvi2nM4_z6fgHlMaTYJ76D4JQ7nrP5tZb0oosXlWfB7-kRaqkoFhpttd9MD00bd0_nBftqNwO2bNxSO0p7HFx4pcj9GAV_vo4LhKm3r1A7_DMkJYbr3so4dTg_wBWnS4h_vcw4p7H_CGeXibeXhZYcs8LJmHFfOeoMuTTxfTmaOzdDhZ4AaNE4mEBj6FT7uI_VzYp56be5T5kZ9xsBdjHhe5X4hUAjnYl8JHoIT7jJHCE0IG_lO0U9UVf46wyxmYz2Cj8hT8fpqCL81SeIBFURYymg_Re_NGk0xL2ItMKmViXdkqSyQOQ_TGVr1Wui23VToysCT6s75JCPQ6iSZu4A3Ra1sML1DspAH161bWEQHSlEATzxSKthcD_xBFPXxtBSHo3i-plt-ksLvh3-HdH32Bdjdf4RHaadYtfwlmc8NeSTL_BqR6xsc
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+Neurochemistry+Review%3A+Microglial+immunometabolism+in+traumatic+brain+injury&rft.jtitle=Journal+of+neurochemistry&rft.au=Strogulski%2C+Nathan+R.&rft.au=Portela%2C+Luis+V.&rft.au=Polster%2C+Brian+M.&rft.au=Loane%2C+David+J.&rft.date=2023-10-01&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=167&rft.issue=2&rft.spage=129&rft.epage=153&rft_id=info:doi/10.1111%2Fjnc.15959&rft_id=info%3Apmid%2F37759406&rft.externalDocID=PMC10655864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon