Rate-Distortion Optimal Video Transport Over IP Allowing Packets With Bit Errors

We propose new models and methods for rate-distortion (RD) optimal video delivery over IP, when packets with bit errors are also delivered. In particular, we propose RD optimal methods for slicing and unequal error protection (UEP) of packets over IP allowing transmission of packets with bit errors....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 16; no. 5; pp. 1315 - 1326
Main Authors Harmanci, O., Tekalp, A.M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
DOI10.1109/TIP.2007.891792

Cover

More Information
Summary:We propose new models and methods for rate-distortion (RD) optimal video delivery over IP, when packets with bit errors are also delivered. In particular, we propose RD optimal methods for slicing and unequal error protection (UEP) of packets over IP allowing transmission of packets with bit errors. The proposed framework can be employed in a classical independent-layer transport model for optimal slicing, as well as in a cross-layer transport model for optimal slicing and UEP, where the forward error correction (FEC) coding is performed at the link layer, but the application controls the FEC code rate with the constraint that a given IP packet is subject to constant channel protection. The proposed method uses a novel dynamic programming approach to determine the optimal slicing and UEP configuration for each video frame in a practical manner, that is compliant with the AVC/H.264 standard. We also propose new rate and distortion estimation techniques at the encoder side in order to efficiently evaluate the objective function for a slice configuration. The cross-layer formulation option effectively determines which regions of a frame should be protected better; hence, it can be considered as a spatial UEP scheme. We successfully demonstrate, by means of experimental results, that each component of the proposed system provides significant gains, up to 2.0 dB, compared to competitive methods
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2007.891792