ON LOCAL STRUCTURAL STABILITY OF ONE-DIMENSIONAL SHOCKS IN RADIATION HYDRODYNAMICS

In this paper, we are concerned with the local structural stability of one-dimensional shock waves in radiation hydrodynamics described by the isentropic Euler-Boltzmann equations. Even though in this radiation hydrodynamics model, the radiative effects can be understood as source terms to the isent...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica scientia Vol. 35; no. 1; pp. 1 - 44
Main Author 唐平凡 方北香 王亚光
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2015
Department of Mathematics, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
Subjects
Online AccessGet full text
ISSN0252-9602
1572-9087
DOI10.1016/S0252-9602(14)60137-5

Cover

More Information
Summary:In this paper, we are concerned with the local structural stability of one-dimensional shock waves in radiation hydrodynamics described by the isentropic Euler-Boltzmann equations. Even though in this radiation hydrodynamics model, the radiative effects can be understood as source terms to the isentropic Euler equations of hydrodynamics, in general the radiation field has singularities propagated in an angular domain issuing from the initial point across which the density is discontinuous. This is the major difficulty in the stability analysis of shocks. Under certain assumptions on the radiation parameters, we show there exists a local weak solution to the initial value problem of the one dimensional Euler-Boltzmann equations, in which the radiation intensity is continuous, while the density and velocity are piecewise Lipschitz continuous with a strong discontinuity representing the shock-front. The existence of such a solution indicates that shock waves are structurally stable, at least local in time, in radiation hydrodynamics.
Bibliography:In this paper, we are concerned with the local structural stability of one-dimensional shock waves in radiation hydrodynamics described by the isentropic Euler-Boltzmann equations. Even though in this radiation hydrodynamics model, the radiative effects can be understood as source terms to the isentropic Euler equations of hydrodynamics, in general the radiation field has singularities propagated in an angular domain issuing from the initial point across which the density is discontinuous. This is the major difficulty in the stability analysis of shocks. Under certain assumptions on the radiation parameters, we show there exists a local weak solution to the initial value problem of the one dimensional Euler-Boltzmann equations, in which the radiation intensity is continuous, while the density and velocity are piecewise Lipschitz continuous with a strong discontinuity representing the shock-front. The existence of such a solution indicates that shock waves are structurally stable, at least local in time, in radiation hydrodynamics.
radiation hydrodynamics; Euler-Boltzmann equations; Riemann problems shock waves
42-1227/O
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(14)60137-5