MD-NDNet: a multi-dimensional convolutional neural network for false-positive reduction in pulmonary nodule detection
Pulmonary nodule false-positive reduction is of great significance for automated nodule detection in clinical diagnosis of low-dose computed tomography (LDCT) lung cancer screening. Due to individual intra-nodule variations and visual similarities between true nodules and false positives as soft tis...
Saved in:
Published in | Physics in medicine & biology Vol. 65; no. 23; pp. 235053 - 235066 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
07.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-9155 1361-6560 1361-6560 |
DOI | 10.1088/1361-6560/aba87c |
Cover
Summary: | Pulmonary nodule false-positive reduction is of great significance for automated nodule detection in clinical diagnosis of low-dose computed tomography (LDCT) lung cancer screening. Due to individual intra-nodule variations and visual similarities between true nodules and false positives as soft tissues in LDCT images, the current clinical practices remain subject to shortcomings of potential high-risk and time-consumption issues. In this paper, we propose a multi-dimensional nodule detection network (MD-NDNet) for automatic nodule false-positive reduction using deep convolutional neural network (DCNNs). The underlying method collaboratively integrates multi-dimensional nodule information to complementarily and comprehensively extract nodule inter-plane volumetric correlation features using three-dimensional CNNs (3D CNNs) and spatial nodule correlation features from sagittal, coronal, and axial planes using two-dimensional CNNs (2D CNNs) with attention module. To incorporate different sizes and shapes of nodule candidates, a multi-scale ensemble strategy is employed for probability aggregation with weights. The proposed method is evaluated on the LUNA16 challenge dataset in ISBI 2016 with ten-fold cross-validation. Experiment results show that the proposed framework achieves classification performance with a CPM score of 0.9008. All of these indicate that our method enables an efficient, accurate and reliable pulmonary nodule detection for clinical diagnosis. |
---|---|
Bibliography: | PMB-110314.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-9155 1361-6560 1361-6560 |
DOI: | 10.1088/1361-6560/aba87c |