A tailored ML-EM algorithm for reconstruction of truncated projection data using few view angles
Dedicated cardiac single photon emission computed tomography (SPECT) systems have the advantage of high speed and sensitivity at no loss, or even a gain, in resolution. The potential drawbacks of these dedicated systems are data truncation by the small field of view (FOV) and the lack of view angles...
Saved in:
| Published in | Physics in medicine & biology Vol. 58; no. 12; pp. N157 - N169 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
21.06.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-9155 1361-6560 1361-6560 |
| DOI | 10.1088/0031-9155/58/12/N157 |
Cover
| Summary: | Dedicated cardiac single photon emission computed tomography (SPECT) systems have the advantage of high speed and sensitivity at no loss, or even a gain, in resolution. The potential drawbacks of these dedicated systems are data truncation by the small field of view (FOV) and the lack of view angles. Serious artifacts, including streaks outside the FOV and distortion in the FOV, are introduced to the reconstruction when using the traditional emission data maximum-likelihood expectation-maximization (ML-EM) algorithm to reconstruct images from the truncated data with a small number of views. In this note, we propose a tailored ML-EM algorithm to suppress the artifacts caused by data truncation and insufficient angular sampling by reducing the image updating step sizes for the pixels outside the FOV. As a consequence, the convergence speed for the pixels outside the FOV is decelerated. We applied the proposed algorithm to truncated analytical data, Monte Carlo simulation data and real emission data with different numbers of views. The computer simulation results show that the tailored ML-EM algorithm outperforms the conventional ML-EM algorithm in terms of streak artifacts and distortion suppression for reconstruction from truncated projection data with a small number of views. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0031-9155 1361-6560 1361-6560 |
| DOI: | 10.1088/0031-9155/58/12/N157 |