Enhanced Production of Galactooligosaccharides Enriched Skim Milk and Applied to Potentially Synbiotic Fermented Milk with Lactobacillus rhamnosus 4B15

In the current study, we first investigated a method for directly transforming lactose into galacto-oligosaccharides (GOS) for manufacturing low-lactose and GOS-enriched skim milk (GSM) and then evaluated its prebiotic potential by inoculating five strains of Bifidobacterium spp. In addition, fermen...

Full description

Saved in:
Bibliographic Details
Published inFood science of animal resources Vol. 39; no. 5; pp. 725 - 741
Main Authors Oh, Nam Su, Kim, Kyeongmu, Oh, Sangnam, Kim, Younghoon
Format Journal Article
LanguageEnglish
Published Korean Society for Food Science of Animal Resources 01.10.2019
한국축산식품학회
Subjects
Online AccessGet full text
ISSN2636-0772
2636-0780
2636-0780
DOI10.5851/kosfa.2019.e55

Cover

More Information
Summary:In the current study, we first investigated a method for directly transforming lactose into galacto-oligosaccharides (GOS) for manufacturing low-lactose and GOS-enriched skim milk (GSM) and then evaluated its prebiotic potential by inoculating five strains of Bifidobacterium spp. In addition, fermented GSM (FGSM) was prepared using a potentially probiotic Lactobacillus strain and its fermentation characteristics and antioxidant capacities were determined. We found that GOS in GSM were metabolized by all five Bifidobacterium strains after incubation and promoted their growth. The levels of antioxidant activities including radical scavenging activities and 3-hydroxy-3-methylglutaryl-CoA reductase inhibition rate in GSM were significantly increased by fermentation with the probiotic Lactobacillus strain. Moreover, thirty-nine featured peptides in FGSM was detected. In particular, six peptides derived from β-casein, two peptides originated from αs1-casein and κ-casein were newly identified, respectively. Our findings indicate that GSM can potentially be used as a prebiotic substrate and FGSM can potentially prevent oxidative stress during the production of synbiotic fermented milk in the food industry.In the current study, we first investigated a method for directly transforming lactose into galacto-oligosaccharides (GOS) for manufacturing low-lactose and GOS-enriched skim milk (GSM) and then evaluated its prebiotic potential by inoculating five strains of Bifidobacterium spp. In addition, fermented GSM (FGSM) was prepared using a potentially probiotic Lactobacillus strain and its fermentation characteristics and antioxidant capacities were determined. We found that GOS in GSM were metabolized by all five Bifidobacterium strains after incubation and promoted their growth. The levels of antioxidant activities including radical scavenging activities and 3-hydroxy-3-methylglutaryl-CoA reductase inhibition rate in GSM were significantly increased by fermentation with the probiotic Lactobacillus strain. Moreover, thirty-nine featured peptides in FGSM was detected. In particular, six peptides derived from β-casein, two peptides originated from αs1-casein and κ-casein were newly identified, respectively. Our findings indicate that GSM can potentially be used as a prebiotic substrate and FGSM can potentially prevent oxidative stress during the production of synbiotic fermented milk in the food industry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2636-0772
2636-0780
2636-0780
DOI:10.5851/kosfa.2019.e55