Hybrid projection-reflection method for phase retrieval

The phase-retrieval problem, fundamental in applied physics and engineering, addresses the question of how to determine the phase of a complex-valued function from modulus data and additional a priori information. Recently we identified two important methods for phase retrieval, namely, Fienup'...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Optical Society of America. A, Optics, image science, and vision Vol. 20; no. 6; p. 1025
Main Authors Bauschke, Heinz H, Combettes, Patrick L, Luke, D Russell
Format Journal Article
LanguageEnglish
Published United States 01.06.2003
Online AccessGet full text
ISSN1084-7529
1520-8532
DOI10.1364/josaa.20.001025

Cover

More Information
Summary:The phase-retrieval problem, fundamental in applied physics and engineering, addresses the question of how to determine the phase of a complex-valued function from modulus data and additional a priori information. Recently we identified two important methods for phase retrieval, namely, Fienup's basic input-output and hybrid input-output (HIO) algorithms, with classical convex projection methods and suggested that further connections between convex optimization and phase retrieval should be explored. Following up on this work, we introduce a new projection-based method, termed the hybrid projection-reflection (HPR) algorithm, for solving phase-retrieval problems featuring nonnegativity constraints in the object domain. Motivated by properties of the HPR algorithm for convex constraints, we recommend an error measure studied by Fienup more than 20 years ago. This error measure, which has received little attention in the literature, lends itself to an easily implementable stopping criterion. In numerical experiments we found the HPR algorithm to be a competitive alternative to the HIO algorithm and the stopping criterion to be reliable and robust.
ISSN:1084-7529
1520-8532
DOI:10.1364/josaa.20.001025