A light addressable electrode with a TiO2 nanocrystalline film for localized electrical stimulation of cultured neurons
To improve the existing light-addressable electrode (LAE) for neuronal stimulation, we attempted to replace a photoconductive layer of hydrogenated amorphous silicon (a-Si:H), which is subject to corrosion in cell culture environments, with a TiO2 nanocrystalline film. As seen in previous LAEs with...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 192; pp. 393 - 398 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-4005 1873-3077 |
DOI | 10.1016/j.snb.2013.10.139 |
Cover
Summary: | To improve the existing light-addressable electrode (LAE) for neuronal stimulation, we attempted to replace a photoconductive layer of hydrogenated amorphous silicon (a-Si:H), which is subject to corrosion in cell culture environments, with a TiO2 nanocrystalline film. As seen in previous LAEs with a-Si:H, the TiO2 film formed on a metal film electrode serves as a photo-switch: UV light illumination locally increases the conductivity of the TiO2 film and generates a virtual electrode. TiO2 is a lower cost material, easier to fabricate than a-Si:H, and more compatible with cell culture environments; thus, it does not require a passivation layer on top. The measurements of photoelectric characteristics of TiO2 LAE ascertained that adequate photo-switching properties for selective neuronal stimulation were achieved; however, two possible issues that could affect performance were identified: degradation of the photo-switching property due to electrolyte penetration into the TiO2 film and a slow switching response due to charge carrier trapping into surface defects. Despite these issues, however, the feasibility of light-addressed electrical stimulation with the proposed TiO2 LAE was successfully demonstrated in an experiment using a primary neuron-glia co-culture. Thus, TiO2 is an alternative candidate to a-Si:H in photo-electrochemical biointerfaces. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2013.10.139 |