Current Status and Opportunities of Organic Thin-Film Transistor Technologies
Attributed to its advantages of super mechanical flexibility, very low-temperature processing, and compatibility with low cost and high throughput manufacturing, organic thin-film transistor (OTFT) technology is able to bring electrical, mechanical, and industrial benefits to a wide range of new app...
Saved in:
Published in | IEEE transactions on electron devices Vol. 64; no. 5; pp. 1906 - 1921 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9383 1557-9646 |
DOI | 10.1109/TED.2017.2677086 |
Cover
Summary: | Attributed to its advantages of super mechanical flexibility, very low-temperature processing, and compatibility with low cost and high throughput manufacturing, organic thin-film transistor (OTFT) technology is able to bring electrical, mechanical, and industrial benefits to a wide range of new applications by activating nonflat surfaces with flexible displays, sensors, and other electronic functions. Despite both strong application demand and these significant technological advances, there is still a gap to be filled for OTFT technology to be widely commercially adopted. This paper provides a comprehensive review of the current status of OTFT technologies ranging from material, device, process, and integration, to design and system applications, and clarifies the real challenges behind to be addressed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2017.2677086 |