Coding Algorithms for 3DTV-A Survey

Research efforts on 3DTV technology have been strengthened worldwide recently, covering the whole media processing chain from capture to display. Different 3DTV systems rely on different 3D scene representations that integrate various types of data. Efficient coding of these data is crucial for the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 17; no. 11; pp. 1606 - 1621
Main Authors Smolic, A., Mueller, K., Stefanoski, N., Ostermann, J., Gotchev, A., Akar, G.B., Triantafyllidis, G., Koz, A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
1558-2205
DOI10.1109/TCSVT.2007.909972

Cover

More Information
Summary:Research efforts on 3DTV technology have been strengthened worldwide recently, covering the whole media processing chain from capture to display. Different 3DTV systems rely on different 3D scene representations that integrate various types of data. Efficient coding of these data is crucial for the success of 3DTV. Compression of pixel-type data including stereo video, multiview video, and associated depth or disparity maps extends available principles of classical video coding. Powerful algorithms and open international standards for multiview video coding and coding of video plus depth data are available and under development, which will provide the basis for introduction of various 3DTV systems and services in the near future. Compression of 3D mesh models has also reached a high level of maturity. For static geometry, a variety of powerful algorithms are available to efficiently compress vertices and connectivity. Compression of dynamic 3D geometry is currently a more active field of research. Temporal prediction is an important mechanism to remove redundancy from animated 3D mesh sequences. Error resilience is important for transmission of data over error prone channels, and multiple description coding (MDC) is a suitable way to protect data. MDC of still images and 2D video has already been widely studied, whereas multiview video and 3D meshes have been addressed only recently. Intellectual property protection of 3D data by watermarking is a pioneering research area as well. The 3D watermarking methods in the literature are classified into three groups, considering the dimensions of the main components of scene representations and the resulting components after applying the algorithm. In general, 3DTV coding technology is maturating. Systems and services may enter the market in the near future. However, the research area is relatively young compared to coding of other types of media. Therefore, there is still a lot of room for improvement and new development of algorithms.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1051-8215
1558-2205
1558-2205
DOI:10.1109/TCSVT.2007.909972