A classification EM algorithm for binned data

A real-time flaw diagnosis application for pressurized containers using acoustic emissions is described. The pressurized containers used are cylindrical tanks containing fluids under pressure. The surface of the pressurized containers is divided into bins, and the number of acoustic signals emanatin...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics & data analysis Vol. 51; no. 2; pp. 466 - 480
Main Authors Samé, Allou, Ambroise, Christophe, Govaert, Gérard
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.11.2006
Elsevier Science
Elsevier
SeriesComputational Statistics & Data Analysis
Subjects
Online AccessGet full text
ISSN0167-9473
1872-7352
DOI10.1016/j.csda.2005.08.009

Cover

More Information
Summary:A real-time flaw diagnosis application for pressurized containers using acoustic emissions is described. The pressurized containers used are cylindrical tanks containing fluids under pressure. The surface of the pressurized containers is divided into bins, and the number of acoustic signals emanating from each bin is counted. Spatial clustering of high density bins using mixture models is used to detect flaws. A dedicated EM algorithm can be derived to select the mixture parameters, but this is a greedy algorithm since it requires the numerical computation of integrals and may converge only slowly. To deal with this problem, a classification version of the EM (CEM) algorithm is defined, and using synthetic and real data sets, the proposed algorithm is compared to the CEM algorithm applied to classical data. The two approaches generate comparable solutions in terms of the resulting partition if the histogram is sufficiently accurate, but the algorithm designed for binned data becomes faster when the number of available observations is large enough.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2005.08.009