Deep learning and Gaussian Mixture Modelling clustering mix. A new approach for fetal morphology view plane differentiation

[Display omitted] The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be estab...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical informatics Vol. 143; p. 104402
Main Authors Belciug, Smaranda, Iliescu, Dominic Gabriel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2023
Subjects
Online AccessGet full text
ISSN1532-0464
1532-0480
1532-0480
DOI10.1016/j.jbi.2023.104402

Cover

Abstract [Display omitted] The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy.
AbstractList The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy.
[Display omitted] The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy.
The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy.The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy.
ArticleNumber 104402
Author Belciug, Smaranda
Iliescu, Dominic Gabriel
Author_xml – sequence: 1
  givenname: Smaranda
  orcidid: 0000-0003-2950-3501
  surname: Belciug
  fullname: Belciug, Smaranda
  email: sbelciug@inf.ucv.ro
  organization: Department of Computer Science, Faculty of Sciences, University of Craiova, Craiova 200585, Romania
– sequence: 2
  givenname: Dominic Gabriel
  surname: Iliescu
  fullname: Iliescu, Dominic Gabriel
  email: dominic.iliescu@umfcv.ro
  organization: Department of Computer Science, Faculty of Sciences, University of Craiova, Craiova 200585, Romania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37217028$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1vVCEUhompsR_6A9wYlm5m5MD9mrhqqlaTNm50TRg4tEy4cAWu7cQ_L-OtXbhoXBAO4X3OyXlOyVGIAQl5DWwNDLp3u_Vu69accVHfTcP4M3ICreAr1gzs6LHummNymvOOMYC27V6QY9Fz6BkfTsivD4gT9ahScOGGqmDopZpzdirQa3df5oT0Ohr0_vCt_ZwLpkM5uvs1PacB76iaphSVvqU2JmqxKE_HmKbb6OPNnv50NTJ5FZAaZy0mDMWp4mJ4SZ5b5TO-erjPyPdPH79dfF5dfb38cnF-tdJi05UVGGxbppVlGiz0RvWs00ODG1XPRoDqDVjc9mBMJzo74GCFNhoAGq6F5eKM8KXvHCa1v1Peyym5UaW9BCYPJuVOVpPyYFIuJiv0doHqbj9mzEWOLuvqoS4S5yz5AANrG9FuavTNQ3Tejmgem_-1XAOwBHSKOSe0_zW__4fRrvzRVpJy_kny_UJidVrtJ5m1w6DRuIS6SBPdE_RvBq23_g
CitedBy_id crossref_primary_10_1136_bmjopen_2023_077366
crossref_primary_10_1038_s41598_024_71530_z
crossref_primary_10_1016_j_artmed_2024_102883
crossref_primary_10_3390_app14135514
crossref_primary_10_1016_j_cmpb_2025_108682
crossref_primary_10_1109_ACCESS_2025_3527151
crossref_primary_10_1016_j_inffus_2024_102911
crossref_primary_10_3390_electronics12173634
crossref_primary_10_1186_s12911_024_02505_3
Cites_doi 10.1038/s41591-018-0300-7
10.1016/S2214-109X(21)00079-6
10.1111/j.1468-0394.2010.00540.x
10.1038/s41598-020-67076-5
10.1016/j.jbi.2014.02.001
10.3390/s21237975
10.2202/1544-6115.1309
10.3390/jcm9113749
10.7189/jogh.10.020378
10.1002/uog.2804
10.1109/CVPR.2017.195
10.1002/uog.6393
10.1016/j.media.2018.02.006
10.1159/000508254
10.2307/2529310
10.1038/s41746-020-00324-0
10.1109/CVPR.2016.90
10.1016/S0893-6080(05)80023-1
10.1109/CVPR.2017.243
10.1002/pd.2016
10.1109/ISBI.2019.8759377
10.1023/A:1012801612483
10.1002/uog.20796
10.1109/4235.585893
10.1109/CVPR.2016.308
10.1109/ICCV.2019.00140
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.jbi.2023.104402
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
ExternalDocumentID 10.1016/j.jbi.2023.104402
37217028
10_1016_j_jbi_2023_104402
S1532046423001235
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABJNI
ABMAC
ABMZM
ABVKL
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
ADVLN
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
NPM
7X8
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c396t-1de550caf0c1f17da706c84e9a4e9931a7d1feb71dd636f8e8f3cdc11142c3f23
IEDL.DBID UNPAY
ISSN 1532-0464
1532-0480
IngestDate Tue Aug 19 18:49:42 EDT 2025
Sat Sep 27 23:02:59 EDT 2025
Thu Apr 03 06:56:54 EDT 2025
Wed Oct 01 04:48:34 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Sat Jul 06 15:30:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Weighted voting
Performance analysis
Fetal morphology
Statistical assessment
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-1de550caf0c1f17da706c84e9a4e9931a7d1feb71dd636f8e8f3cdc11142c3f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2950-3501
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jbi.2023.104402
PMID 37217028
PQID 2818054359
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_jbi_2023_104402
proquest_miscellaneous_2818054359
pubmed_primary_37217028
crossref_primary_10_1016_j_jbi_2023_104402
crossref_citationtrail_10_1016_j_jbi_2023_104402
elsevier_sciencedirect_doi_10_1016_j_jbi_2023_104402
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
2023-Jul
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Paladini (b0035) 2009; 33
Van der Laan, Polley, Hubbard (b0175) 2007; 6
Altman (b0150) 1991
Salomon (b0030) 2008; 28
Deprest, Choolani, Chervenak (b0005) 2020; 47
Namburete (b0060) 2018; 46
Burgos-Artizzu (b0050) 2020; 19
Gorunescu, Belciug (b0100) 2014; 49
Howard A, Sandler M, et al. Searching for MobileNetV3. 2019. arxiv.org/abs/1905.02244.
Wolpert (b0170) 1992; 5
Huang G, Liu Z, van de Maeeten L, Weinberger KQ. Densely connected convolutional networks. 2016. arxiv.org/abs/1608.06993.
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image recognition. 2015. arxiv.org/abs/1512.03385.
Dube, Kar (b0025) 2020; 4
Halkidi, Batistakis, Vazirgiannis (b0090) 2001; 17
Demsar (b0165) 2006; 7
Tegnander, Eik-Nes (b0155) 2006; 28
Int Symp Biomed Imag; 2019. p. 824–8. doi: 10.1109/ISBI.2019.9759377.
Chmielewska, Barrat, Townsend (b0015) 2021; 9
Mazur-Bialy, Bogucka, Tim, Oplawski (b0010) 2020; 9
Montero, Bonet-Carne, Burgos-Artizzu (b0055) 2021; 21
Khan, Nabeka, Akbar, Mahtab, Shimokawa, Islam, Matsuda (b0020) 2020; 10
Landis, Koch (b0160) 1997; 33
Phillip M, et al. Convolutional Neural Networks for automated fetal cardiac assessment using 4D B-Mode ultrasound. In: IEEE 16
Benjamens, Dhunno, Mesko (b0045) 2020; 3
Brualdi (b0105) 2010
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception architecture for computer vision. 2015. arxiv.org/abs/1512.00567.
Komatsu, Matsuoka (b0075) 2019
Topol (b0040) 2019; 25
Graham, Grotschel, Lovasz (b0110) 1995
Matsuoka R, Komatsu M, et al. A novel deep learning based system for fetal cardiac screening. Ultras Obstet Gynecol 2019. doi: 10.1002.uog.20945.
Gorunescu, Gorunescu, Saftoiu, Vilmann, Belciug (b0095) 2011; 28
Banzhaf (b0115) 1965; 19
Torrents-Barrena (b0080) 2019; S1076–6332
Chollet F, Xception: deep learning with depthwise separable convolutions. 2016. arxiv.org/abs/1610.02357.
Tan M, Le Q. EfficientNetV2: smaller models and faster training. 2021. arxiv.org/abs/2104.00298.
Wolpert, Macredy (b0085) 1997; 1
Mazur-Bialy (10.1016/j.jbi.2023.104402_b0010) 2020; 9
Salomon (10.1016/j.jbi.2023.104402_b0030) 2008; 28
Graham (10.1016/j.jbi.2023.104402_b0110) 1995
Torrents-Barrena (10.1016/j.jbi.2023.104402_b0080) 2019; S1076–6332
Wolpert (10.1016/j.jbi.2023.104402_b0170) 1992; 5
10.1016/j.jbi.2023.104402_b0135
Komatsu (10.1016/j.jbi.2023.104402_b0075) 2019
10.1016/j.jbi.2023.104402_b0130
Khan (10.1016/j.jbi.2023.104402_b0020) 2020; 10
Gorunescu (10.1016/j.jbi.2023.104402_b0095) 2011; 28
Gorunescu (10.1016/j.jbi.2023.104402_b0100) 2014; 49
Wolpert (10.1016/j.jbi.2023.104402_b0085) 1997; 1
10.1016/j.jbi.2023.104402_b0070
Namburete (10.1016/j.jbi.2023.104402_b0060) 2018; 46
Demsar (10.1016/j.jbi.2023.104402_b0165) 2006; 7
Montero (10.1016/j.jbi.2023.104402_b0055) 2021; 21
Benjamens (10.1016/j.jbi.2023.104402_b0045) 2020; 3
Altman (10.1016/j.jbi.2023.104402_b0150) 1991
Topol (10.1016/j.jbi.2023.104402_b0040) 2019; 25
10.1016/j.jbi.2023.104402_b0145
10.1016/j.jbi.2023.104402_b0125
Chmielewska (10.1016/j.jbi.2023.104402_b0015) 2021; 9
Van der Laan (10.1016/j.jbi.2023.104402_b0175) 2007; 6
10.1016/j.jbi.2023.104402_b0065
10.1016/j.jbi.2023.104402_b0120
Brualdi (10.1016/j.jbi.2023.104402_b0105) 2010
10.1016/j.jbi.2023.104402_b0140
Banzhaf (10.1016/j.jbi.2023.104402_b0115) 1965; 19
Landis (10.1016/j.jbi.2023.104402_b0160) 1997; 33
Paladini (10.1016/j.jbi.2023.104402_b0035) 2009; 33
Halkidi (10.1016/j.jbi.2023.104402_b0090) 2001; 17
Tegnander (10.1016/j.jbi.2023.104402_b0155) 2006; 28
Burgos-Artizzu (10.1016/j.jbi.2023.104402_b0050) 2020; 19
Deprest (10.1016/j.jbi.2023.104402_b0005) 2020; 47
Dube (10.1016/j.jbi.2023.104402_b0025) 2020; 4
References_xml – reference: Huang G, Liu Z, van de Maeeten L, Weinberger KQ. Densely connected convolutional networks. 2016. arxiv.org/abs/1608.06993.
– volume: 21
  start-page: 7975
  year: 2021
  ident: b0055
  article-title: Generative adversarial networks to improve fetal brain fine-grained plane classification
  publication-title: Sensors
– volume: 9
  start-page: 3749
  year: 2020
  ident: b0010
  article-title: Pregnancy and Childbirth in the COVID-19 Era - the course of disease and maternal-fetal transmission
  publication-title: J. Clin. Med.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0165
  article-title: Statistical comparison of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 49
  start-page: 112
  year: 2014
  end-page: 118
  ident: b0100
  article-title: Evolutionary strategy to develop learning-based decision systems. Application to breast cancer and liver fibrosis stadialization
  publication-title: J Biomed Inf
– volume: 28
  start-page: 33
  year: 2011
  end-page: 44
  ident: b0095
  article-title: Competitive/collaborative neural computing system for medical diagnosis in pancreatic cancer detection
  publication-title: Exp Sys
– volume: 1
  start-page: 67
  year: 1997
  ident: b0085
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
– year: 1995
  ident: b0110
  article-title: Hand book of combinatorics
– year: 2010
  ident: b0105
  article-title: Introductory combinatorics
– volume: 19
  start-page: 10200
  year: 2020
  ident: b0050
  article-title: FETAL_PLANES_DB: common maternal-fetal ultrasound images
  publication-title: Nat Scientific Reports
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: b0170
  article-title: Stacked generalization
  publication-title: Neural Networks
– year: 2019
  ident: b0075
  article-title: Novel AI-guided ultrasound screening system for fetal heart can demonstrate finding in timeline diagram
  publication-title: Ultras Obstet Gynecol
– reference: Howard A, Sandler M, et al. Searching for MobileNetV3. 2019. arxiv.org/abs/1905.02244.
– volume: 46
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0060
  article-title: Fully automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning
  publication-title: Med Image Anal
– volume: 9
  start-page: 759
  year: 2021
  end-page: 772
  ident: b0015
  article-title: Effects of the COVID-19 pandemic on the maternal and perinatal outcomes: a systematic review and meta-analysis
  publication-title: Lancet Global Health
– volume: 33
  start-page: 159
  year: 1997
  end-page: 174
  ident: b0160
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 28
  start-page: 822
  year: 2008
  end-page: 827
  ident: b0030
  article-title: A score-based method for quality control of fetal images at routine second trimester ultrasound examination
  publication-title: Prenat Diag
– year: 1991
  ident: b0150
  article-title: Practical statistics for medical research
– reference: Matsuoka R, Komatsu M, et al. A novel deep learning based system for fetal cardiac screening. Ultras Obstet Gynecol 2019. doi: 10.1002.uog.20945.
– reference: Phillip M, et al. Convolutional Neural Networks for automated fetal cardiac assessment using 4D B-Mode ultrasound. In: IEEE 16
– volume: 17
  start-page: 107
  year: 2001
  end-page: 145
  ident: b0090
  article-title: On clustering validation techniques
  publication-title: J Intell Inf Syst
– reference: Int Symp Biomed Imag; 2019. p. 824–8. doi: 10.1109/ISBI.2019.9759377.
– volume: 28
  start-page: 8
  year: 2006
  end-page: 14
  ident: b0155
  article-title: The examiner’s ultrasound experience has a significant impact on the detection rate of congenital heart defect at the second trimester fetal examination
  publication-title: Ultras Obstet Gynecol
– reference: Tan M, Le Q. EfficientNetV2: smaller models and faster training. 2021. arxiv.org/abs/2104.00298.
– volume: 19
  start-page: 317
  year: 1965
  end-page: 343
  ident: b0115
  article-title: Weighted voting doesn’t work: a mathematical analysis
  publication-title: Rutgers Law Rev
– volume: 33
  start-page: 720
  year: 2009
  end-page: 729
  ident: b0035
  article-title: Sonography in obese and overweight pregnant women: clinical, medicolegal and technical issues
  publication-title: Ultrasound Obstet Gynecol
– reference: He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image recognition. 2015. arxiv.org/abs/1512.03385.
– volume: 10
  year: 2020
  ident: b0020
  article-title: Risk of congenital birth defects during COVID-19 pandemic: draw attention to the physicians and policymakers
  publication-title: J. Glob. Health
– volume: 25
  start-page: 44
  year: 2019
  end-page: 46
  ident: b0040
  article-title: High performances medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
– volume: S1076–6332
  start-page: 30575
  year: 2019
  end-page: 30576
  ident: b0080
  article-title: Assessment of radiomics and deep learning for the segmentation of fetal and maternal anatomy in magnetic resonance imagining and ultrasound
  publication-title: Acad Radiol
– volume: 4
  year: 2020
  ident: b0025
  article-title: COVID-19 in pregnancy: the foetal perspective-a systematic review
  publication-title: Neonatology
– volume: 3
  start-page: 118
  year: 2020
  ident: b0045
  article-title: The state of artificial intelligence-based FDA approved medical devices and algorithms: an online database
  publication-title: NPJ Digit Med
– reference: Chollet F, Xception: deep learning with depthwise separable convolutions. 2016. arxiv.org/abs/1610.02357.
– reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception architecture for computer vision. 2015. arxiv.org/abs/1512.00567.
– volume: 47
  start-page: 689
  year: 2020
  end-page: 698
  ident: b0005
  article-title: Fetal diagnosis and therapy during the COVID-19 Pandemic: guidance on behalf of the international fetal medicine and surgery society
  publication-title: Fetal Diagn. Ther.
– volume: 6
  year: 2007
  ident: b0175
  article-title: Super learner
  publication-title: Stat Appl Genet Mol Biol
– volume: 25
  start-page: 44
  year: 2019
  ident: 10.1016/j.jbi.2023.104402_b0040
  article-title: High performances medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 9
  start-page: 759
  issue: 6
  year: 2021
  ident: 10.1016/j.jbi.2023.104402_b0015
  article-title: Effects of the COVID-19 pandemic on the maternal and perinatal outcomes: a systematic review and meta-analysis
  publication-title: Lancet Global Health
  doi: 10.1016/S2214-109X(21)00079-6
– volume: 28
  start-page: 33
  issue: 1
  year: 2011
  ident: 10.1016/j.jbi.2023.104402_b0095
  article-title: Competitive/collaborative neural computing system for medical diagnosis in pancreatic cancer detection
  publication-title: Exp Sys
  doi: 10.1111/j.1468-0394.2010.00540.x
– volume: 19
  start-page: 10200
  year: 2020
  ident: 10.1016/j.jbi.2023.104402_b0050
  article-title: FETAL_PLANES_DB: common maternal-fetal ultrasound images
  publication-title: Nat Scientific Reports
  doi: 10.1038/s41598-020-67076-5
– volume: 49
  start-page: 112
  year: 2014
  ident: 10.1016/j.jbi.2023.104402_b0100
  article-title: Evolutionary strategy to develop learning-based decision systems. Application to breast cancer and liver fibrosis stadialization
  publication-title: J Biomed Inf
  doi: 10.1016/j.jbi.2014.02.001
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.jbi.2023.104402_b0165
  article-title: Statistical comparison of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– volume: 21
  start-page: 7975
  issue: 33
  year: 2021
  ident: 10.1016/j.jbi.2023.104402_b0055
  article-title: Generative adversarial networks to improve fetal brain fine-grained plane classification
  publication-title: Sensors
  doi: 10.3390/s21237975
– ident: 10.1016/j.jbi.2023.104402_b0070
– volume: 19
  start-page: 317
  issue: 2
  year: 1965
  ident: 10.1016/j.jbi.2023.104402_b0115
  article-title: Weighted voting doesn’t work: a mathematical analysis
  publication-title: Rutgers Law Rev
– volume: 6
  issue: 1
  year: 2007
  ident: 10.1016/j.jbi.2023.104402_b0175
  article-title: Super learner
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1309
– volume: 9
  start-page: 3749
  issue: 11
  year: 2020
  ident: 10.1016/j.jbi.2023.104402_b0010
  article-title: Pregnancy and Childbirth in the COVID-19 Era - the course of disease and maternal-fetal transmission
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9113749
– year: 2010
  ident: 10.1016/j.jbi.2023.104402_b0105
– volume: 10
  issue: 2
  year: 2020
  ident: 10.1016/j.jbi.2023.104402_b0020
  article-title: Risk of congenital birth defects during COVID-19 pandemic: draw attention to the physicians and policymakers
  publication-title: J. Glob. Health
  doi: 10.7189/jogh.10.020378
– volume: 28
  start-page: 8
  year: 2006
  ident: 10.1016/j.jbi.2023.104402_b0155
  article-title: The examiner’s ultrasound experience has a significant impact on the detection rate of congenital heart defect at the second trimester fetal examination
  publication-title: Ultras Obstet Gynecol
  doi: 10.1002/uog.2804
– ident: 10.1016/j.jbi.2023.104402_b0145
  doi: 10.1109/CVPR.2017.195
– volume: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.jbi.2023.104402_b0025
  article-title: COVID-19 in pregnancy: the foetal perspective-a systematic review
  publication-title: Neonatology
– year: 1991
  ident: 10.1016/j.jbi.2023.104402_b0150
– year: 1995
  ident: 10.1016/j.jbi.2023.104402_b0110
– volume: 33
  start-page: 720
  issue: 6
  year: 2009
  ident: 10.1016/j.jbi.2023.104402_b0035
  article-title: Sonography in obese and overweight pregnant women: clinical, medicolegal and technical issues
  publication-title: Ultrasound Obstet Gynecol
  doi: 10.1002/uog.6393
– volume: 46
  start-page: 1
  year: 2018
  ident: 10.1016/j.jbi.2023.104402_b0060
  article-title: Fully automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.02.006
– volume: 47
  start-page: 689
  year: 2020
  ident: 10.1016/j.jbi.2023.104402_b0005
  article-title: Fetal diagnosis and therapy during the COVID-19 Pandemic: guidance on behalf of the international fetal medicine and surgery society
  publication-title: Fetal Diagn. Ther.
  doi: 10.1159/000508254
– volume: 33
  start-page: 159
  issue: 1
  year: 1997
  ident: 10.1016/j.jbi.2023.104402_b0160
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 3
  start-page: 118
  year: 2020
  ident: 10.1016/j.jbi.2023.104402_b0045
  article-title: The state of artificial intelligence-based FDA approved medical devices and algorithms: an online database
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-020-00324-0
– volume: S1076–6332
  start-page: 30575
  year: 2019
  ident: 10.1016/j.jbi.2023.104402_b0080
  article-title: Assessment of radiomics and deep learning for the segmentation of fetal and maternal anatomy in magnetic resonance imagining and ultrasound
  publication-title: Acad Radiol
– ident: 10.1016/j.jbi.2023.104402_b0120
  doi: 10.1109/CVPR.2016.90
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 10.1016/j.jbi.2023.104402_b0170
  article-title: Stacked generalization
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– ident: 10.1016/j.jbi.2023.104402_b0125
  doi: 10.1109/CVPR.2017.243
– ident: 10.1016/j.jbi.2023.104402_b0135
– volume: 28
  start-page: 822
  issue: 9
  year: 2008
  ident: 10.1016/j.jbi.2023.104402_b0030
  article-title: A score-based method for quality control of fetal images at routine second trimester ultrasound examination
  publication-title: Prenat Diag
  doi: 10.1002/pd.2016
– ident: 10.1016/j.jbi.2023.104402_b0065
  doi: 10.1109/ISBI.2019.8759377
– volume: 17
  start-page: 107
  year: 2001
  ident: 10.1016/j.jbi.2023.104402_b0090
  article-title: On clustering validation techniques
  publication-title: J Intell Inf Syst
  doi: 10.1023/A:1012801612483
– year: 2019
  ident: 10.1016/j.jbi.2023.104402_b0075
  article-title: Novel AI-guided ultrasound screening system for fetal heart can demonstrate finding in timeline diagram
  publication-title: Ultras Obstet Gynecol
  doi: 10.1002/uog.20796
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.jbi.2023.104402_b0085
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– ident: 10.1016/j.jbi.2023.104402_b0130
  doi: 10.1109/CVPR.2016.308
– ident: 10.1016/j.jbi.2023.104402_b0140
  doi: 10.1109/ICCV.2019.00140
SSID ssj0011556
Score 2.430233
Snippet [Display omitted] The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology...
The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104402
SubjectTerms Deep learning
Fetal morphology
Performance analysis
Statistical assessment
Weighted voting
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KH9QioufX-cUIPim5y3b3ssljqdYinC9a6Nuy2Wwk5ZoL9oIVwb_dmezmqCgVfAgkIQvDzuzOLzsfP4BXmr1Epm2Se6cS5WVKS6rUSZ25MlcFeQ3L5x3Lj9nxifpwujjdgcOxFobTKuPeH_b0YbeOb-ZxNudd08w_CeY0UISfZaj45Ap2pZnFYPZzm-ZBgGdgcOWPOY1RjZHNIcfrrGxmzB_OkU4VT1b-4pv-xJ57cLNvO_v9m12trvijo7twJwJJPAiy3oMd305g70p7wQncWMbA-QRuh-M5DFVH9-HHW-87jJQRX9C2Fb63_QVXVOKyueSwAjJN2tCxG92q534KfHveXM7wAAmM49iOHAn3Yu0JxeP5mtQ2HNQjhxyw41RaHElYNsEMHsDJ0bvPh8dJ5GFInCyyTSIqT_8xztapE7XQldVp5nLlC0tXIYXVlah9qUVVZTKrc5_X0lVOcJmuk_W-fAi77br1jwHTyhcLbwl2CalK5_J96wqfS79QnkYWU0hHDRgXm5QzV8bKjNloZ4aUZlhpJihtCq-3Q7rQoeO6j9WoVvObmRnyINcNezmagKHlxzEVmr51f2G4mRahXrkg0R8F29hKIenvWhN-m8KbrbH8W8Qn_yfiU7jFTyGT-Bnsbr72_jnhpU35YlgQvwCvhRD_
  priority: 102
  providerName: Elsevier
Title Deep learning and Gaussian Mixture Modelling clustering mix. A new approach for fetal morphology view plane differentiation
URI https://dx.doi.org/10.1016/j.jbi.2023.104402
https://www.ncbi.nlm.nih.gov/pubmed/37217028
https://www.proquest.com/docview/2818054359
https://doi.org/10.1016/j.jbi.2023.104402
UnpaywallVersion publishedVersion
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: ACRLP
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: AIKHN
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: .~1
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: IXB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1532-0480
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-0480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011556
  issn: 1532-0480
  databaseCode: AKRWK
  dateStart: 20010201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB5BK4FWiKMcWwSVkXgCJYpr53osx9IFteKBSuXJchxn1aWbVttELCDx25mpk7JcCzxEciQ7csZjzWfPzDcAj2OyElGsvcQa6UkrAtxSWewVkckSmaLV0HTfMZlG45l8PQ_nDVk05cL84L_fxmEdZwufanyTN1ISbWQ3ChF2d6A7m74dvXd8qEMKUZTf28nOg_m7b_zJBv2KMffgal2u9aePerk8Z3cObriIrc2WrpDCTT74dZX55vNPZI7_9Es34XqDPtnIqcstuGTLHuyd4yTswZVJ423vwTV3p8dcqtJt-PLC2jVr6kwcMV3m7JWuN5SGySaLM_JFMKqttqX5ZmZZEwkDNU8WZz4bMUTwrOUwZwiWWWER-rOTFa719nafkZ-CrSn-lrWVWyqnO3dgdvDy3fOx1xRv8IxIo8rjucXDj9FFYHjB41zHQWQSaVONTyq4jnNe2CzmeR6JqEhsUgiTG065vUYUQ3EXOuWqtPvAgtymodWI1biQmTHJUJvUJsKG0uLItA9Bu5zKNMzmVGBjqdoQtmOFIlckcuVE3ocnuyFrR-txUWfZ6ohqcInDGwqX9qJhj1p9UrhnyRGD4lvVG0UMXAiVRYhTv-cUbTcLgUfyGEFfH57uNO_vU7z_X70fQKc6re1DhFNVNoDL_lc-gO7o8M14im-H82eDZnN9A4qzHH0
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qBdtSRE9br36t4JOSu-ztJps8lmo9tdcXW-jbstlsJOWaC-0FK4J_uzPZ5KgoFXwIhGQXhp3Znd_OJ8BrRVoiViZInJWBdCLELZWpoIhtlsgUtYYhe8fsOJ6eyk9n0dkaHPS5MBRW2Z39_kxvT-vuy7hbzXFdluMvnHoaSMTPwmd83oG7MpoouoGNfq7iPBDxtC1caTTFMcretdkGeZ1n5YgaiJOrU3amlb8opz_B5xZsNFVtvn8z8_kNhXT4AO53SJLte2IfwpqrBrB1o77gAO7NOs_5ALa9fY75tKNH8OOdczXrekZ8ZabK2QfTXFFKJZuV1-RXYNQnrS3Zzey8oYIK9HpRXo_YPkM0zvp65AyBLyscwnh2sUC-tZZ6Rj4HVlMsLeu7sCy9HDyG08P3JwfToGvEEFiRxsuA5w4vMtYUoeUFV7lRYWwT6VKDTyq4UTkvXKZ4nsciLhKXFMLmllOerhXFROzAerWo3BNgYe7SyBnEXVzIzNpkYmzqEuEi6XBmOoSw54C2XZVyapYx13042rlGpmlimvZMG8Kb1ZTal-i4bbDs2ap_kzONKuS2aa96EdC4_8ipgsu3aK40VdNC2CsiJH3Xy8aKCoHXa4UAbghvV8LybxL3_o_El7AxPZkd6aOPx5-fwib98WHFz2B9edm45wieltmLdnP8AnLQFCI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB-kB8ohftSvisoIPilbdpvs12NRz0Po4YOF8ylks7PSs7ctdhdP_eedaXbr-XXqw0IekpCdTJhfMjO_AXiSipVIUhtk5HSgSYV8pIo0qBJXZDpnq2HlvWN2lBzO9evj-Lgji5ZcmB_899s4rJNiMZYa3-KN1EIbuZfEDLsHsDc_ejN95_lQJxKiqL-3s50H83dz_MkG_Yox9-FKW6_t5092uTxndw6u-4itzZauUMJNPozbphi7Lz-ROf7TL92Aax36xKlXl5twieoh7J_jJBzC5VnnbR_CVf-mhz5V6RZ8fUG0xq7OxHu0dYmvbLuRNEycLc7EF4FSW21L841u2QoJgzRPF2djnCIjeOw5zJHBMlbE0B9PV7zX29d9FD8FriX-FvvKLY3XndswP3j59vlh0BVvCJzKkyaISuLLj7NV6KIqSkubhonLNOWWv1xFNi2jioo0KstEJVVGWaVc6SLJ7XWqmqg7MKhXNd0DDEvKY7KM1SKlC-eyiXU5ZYpiTTwyH0HYb6dxHbO5FNhYmj6E7cSwyI2I3HiRj-Dpbsja03pc1Fn3OmI6XOLxhuGtvWjY416fDJ9ZccSw-FbtxggDF0NlFfPS73pF261C8ZU8ZdA3gmc7zfv7Eu__V-8HMGg-tvSQ4VRTPOoO0jd73xjt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+and+Gaussian+Mixture+Modelling+clustering+mix.+A+new+approach+for+fetal+morphology+view+plane+differentiation&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Belciug%2C+Smaranda&rft.au=Iliescu%2C+Dominic+Gabriel&rft.date=2023-07-01&rft.issn=1532-0464&rft.volume=143&rft.spage=104402&rft_id=info:doi/10.1016%2Fj.jbi.2023.104402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbi_2023_104402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon