Deep learning and Gaussian Mixture Modelling clustering mix. A new approach for fetal morphology view plane differentiation
[Display omitted] The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be estab...
Saved in:
| Published in | Journal of biomedical informatics Vol. 143; p. 104402 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0464 1532-0480 1532-0480 |
| DOI | 10.1016/j.jbi.2023.104402 |
Cover
| Abstract | [Display omitted]
The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy. |
|---|---|
| AbstractList | The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy. [Display omitted] The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy. The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy.The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy. |
| ArticleNumber | 104402 |
| Author | Belciug, Smaranda Iliescu, Dominic Gabriel |
| Author_xml | – sequence: 1 givenname: Smaranda orcidid: 0000-0003-2950-3501 surname: Belciug fullname: Belciug, Smaranda email: sbelciug@inf.ucv.ro organization: Department of Computer Science, Faculty of Sciences, University of Craiova, Craiova 200585, Romania – sequence: 2 givenname: Dominic Gabriel surname: Iliescu fullname: Iliescu, Dominic Gabriel email: dominic.iliescu@umfcv.ro organization: Department of Computer Science, Faculty of Sciences, University of Craiova, Craiova 200585, Romania |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37217028$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkE1vVCEUhompsR_6A9wYlm5m5MD9mrhqqlaTNm50TRg4tEy4cAWu7cQ_L-OtXbhoXBAO4X3OyXlOyVGIAQl5DWwNDLp3u_Vu69accVHfTcP4M3ICreAr1gzs6LHummNymvOOMYC27V6QY9Fz6BkfTsivD4gT9ahScOGGqmDopZpzdirQa3df5oT0Ohr0_vCt_ZwLpkM5uvs1PacB76iaphSVvqU2JmqxKE_HmKbb6OPNnv50NTJ5FZAaZy0mDMWp4mJ4SZ5b5TO-erjPyPdPH79dfF5dfb38cnF-tdJi05UVGGxbppVlGiz0RvWs00ODG1XPRoDqDVjc9mBMJzo74GCFNhoAGq6F5eKM8KXvHCa1v1Peyym5UaW9BCYPJuVOVpPyYFIuJiv0doHqbj9mzEWOLuvqoS4S5yz5AANrG9FuavTNQ3Tejmgem_-1XAOwBHSKOSe0_zW__4fRrvzRVpJy_kny_UJidVrtJ5m1w6DRuIS6SBPdE_RvBq23_g |
| CitedBy_id | crossref_primary_10_1136_bmjopen_2023_077366 crossref_primary_10_1038_s41598_024_71530_z crossref_primary_10_1016_j_artmed_2024_102883 crossref_primary_10_3390_app14135514 crossref_primary_10_1016_j_cmpb_2025_108682 crossref_primary_10_1109_ACCESS_2025_3527151 crossref_primary_10_1016_j_inffus_2024_102911 crossref_primary_10_3390_electronics12173634 crossref_primary_10_1186_s12911_024_02505_3 |
| Cites_doi | 10.1038/s41591-018-0300-7 10.1016/S2214-109X(21)00079-6 10.1111/j.1468-0394.2010.00540.x 10.1038/s41598-020-67076-5 10.1016/j.jbi.2014.02.001 10.3390/s21237975 10.2202/1544-6115.1309 10.3390/jcm9113749 10.7189/jogh.10.020378 10.1002/uog.2804 10.1109/CVPR.2017.195 10.1002/uog.6393 10.1016/j.media.2018.02.006 10.1159/000508254 10.2307/2529310 10.1038/s41746-020-00324-0 10.1109/CVPR.2016.90 10.1016/S0893-6080(05)80023-1 10.1109/CVPR.2017.243 10.1002/pd.2016 10.1109/ISBI.2019.8759377 10.1023/A:1012801612483 10.1002/uog.20796 10.1109/4235.585893 10.1109/CVPR.2016.308 10.1109/ICCV.2019.00140 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.jbi.2023.104402 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Public Health |
| EISSN | 1532-0480 |
| ExternalDocumentID | 10.1016/j.jbi.2023.104402 37217028 10_1016_j_jbi_2023_104402 S1532046423001235 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO AAYFN ABBOA ABBQC ABFRF ABJNI ABMAC ABMZM ABVKL ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD ADVLN AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC BNPGV CAG COF CS3 DIK DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG5 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K UAP UHS UNMZH XPP ZGI ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD NPM 7X8 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c396t-1de550caf0c1f17da706c84e9a4e9931a7d1feb71dd636f8e8f3cdc11142c3f23 |
| IEDL.DBID | UNPAY |
| ISSN | 1532-0464 1532-0480 |
| IngestDate | Tue Aug 19 18:49:42 EDT 2025 Sat Sep 27 23:02:59 EDT 2025 Thu Apr 03 06:56:54 EDT 2025 Wed Oct 01 04:48:34 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Sat Jul 06 15:30:18 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Weighted voting Performance analysis Fetal morphology Statistical assessment |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-1de550caf0c1f17da706c84e9a4e9931a7d1feb71dd636f8e8f3cdc11142c3f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2950-3501 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jbi.2023.104402 |
| PMID | 37217028 |
| PQID | 2818054359 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jbi_2023_104402 proquest_miscellaneous_2818054359 pubmed_primary_37217028 crossref_primary_10_1016_j_jbi_2023_104402 crossref_citationtrail_10_1016_j_jbi_2023_104402 elsevier_sciencedirect_doi_10_1016_j_jbi_2023_104402 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 2023-Jul 20230701 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomedical informatics |
| PublicationTitleAlternate | J Biomed Inform |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Paladini (b0035) 2009; 33 Van der Laan, Polley, Hubbard (b0175) 2007; 6 Altman (b0150) 1991 Salomon (b0030) 2008; 28 Deprest, Choolani, Chervenak (b0005) 2020; 47 Namburete (b0060) 2018; 46 Burgos-Artizzu (b0050) 2020; 19 Gorunescu, Belciug (b0100) 2014; 49 Howard A, Sandler M, et al. Searching for MobileNetV3. 2019. arxiv.org/abs/1905.02244. Wolpert (b0170) 1992; 5 Huang G, Liu Z, van de Maeeten L, Weinberger KQ. Densely connected convolutional networks. 2016. arxiv.org/abs/1608.06993. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image recognition. 2015. arxiv.org/abs/1512.03385. Dube, Kar (b0025) 2020; 4 Halkidi, Batistakis, Vazirgiannis (b0090) 2001; 17 Demsar (b0165) 2006; 7 Tegnander, Eik-Nes (b0155) 2006; 28 Int Symp Biomed Imag; 2019. p. 824–8. doi: 10.1109/ISBI.2019.9759377. Chmielewska, Barrat, Townsend (b0015) 2021; 9 Mazur-Bialy, Bogucka, Tim, Oplawski (b0010) 2020; 9 Montero, Bonet-Carne, Burgos-Artizzu (b0055) 2021; 21 Khan, Nabeka, Akbar, Mahtab, Shimokawa, Islam, Matsuda (b0020) 2020; 10 Landis, Koch (b0160) 1997; 33 Phillip M, et al. Convolutional Neural Networks for automated fetal cardiac assessment using 4D B-Mode ultrasound. In: IEEE 16 Benjamens, Dhunno, Mesko (b0045) 2020; 3 Brualdi (b0105) 2010 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception architecture for computer vision. 2015. arxiv.org/abs/1512.00567. Komatsu, Matsuoka (b0075) 2019 Topol (b0040) 2019; 25 Graham, Grotschel, Lovasz (b0110) 1995 Matsuoka R, Komatsu M, et al. A novel deep learning based system for fetal cardiac screening. Ultras Obstet Gynecol 2019. doi: 10.1002.uog.20945. Gorunescu, Gorunescu, Saftoiu, Vilmann, Belciug (b0095) 2011; 28 Banzhaf (b0115) 1965; 19 Torrents-Barrena (b0080) 2019; S1076–6332 Chollet F, Xception: deep learning with depthwise separable convolutions. 2016. arxiv.org/abs/1610.02357. Tan M, Le Q. EfficientNetV2: smaller models and faster training. 2021. arxiv.org/abs/2104.00298. Wolpert, Macredy (b0085) 1997; 1 Mazur-Bialy (10.1016/j.jbi.2023.104402_b0010) 2020; 9 Salomon (10.1016/j.jbi.2023.104402_b0030) 2008; 28 Graham (10.1016/j.jbi.2023.104402_b0110) 1995 Torrents-Barrena (10.1016/j.jbi.2023.104402_b0080) 2019; S1076–6332 Wolpert (10.1016/j.jbi.2023.104402_b0170) 1992; 5 10.1016/j.jbi.2023.104402_b0135 Komatsu (10.1016/j.jbi.2023.104402_b0075) 2019 10.1016/j.jbi.2023.104402_b0130 Khan (10.1016/j.jbi.2023.104402_b0020) 2020; 10 Gorunescu (10.1016/j.jbi.2023.104402_b0095) 2011; 28 Gorunescu (10.1016/j.jbi.2023.104402_b0100) 2014; 49 Wolpert (10.1016/j.jbi.2023.104402_b0085) 1997; 1 10.1016/j.jbi.2023.104402_b0070 Namburete (10.1016/j.jbi.2023.104402_b0060) 2018; 46 Demsar (10.1016/j.jbi.2023.104402_b0165) 2006; 7 Montero (10.1016/j.jbi.2023.104402_b0055) 2021; 21 Benjamens (10.1016/j.jbi.2023.104402_b0045) 2020; 3 Altman (10.1016/j.jbi.2023.104402_b0150) 1991 Topol (10.1016/j.jbi.2023.104402_b0040) 2019; 25 10.1016/j.jbi.2023.104402_b0145 10.1016/j.jbi.2023.104402_b0125 Chmielewska (10.1016/j.jbi.2023.104402_b0015) 2021; 9 Van der Laan (10.1016/j.jbi.2023.104402_b0175) 2007; 6 10.1016/j.jbi.2023.104402_b0065 10.1016/j.jbi.2023.104402_b0120 Brualdi (10.1016/j.jbi.2023.104402_b0105) 2010 10.1016/j.jbi.2023.104402_b0140 Banzhaf (10.1016/j.jbi.2023.104402_b0115) 1965; 19 Landis (10.1016/j.jbi.2023.104402_b0160) 1997; 33 Paladini (10.1016/j.jbi.2023.104402_b0035) 2009; 33 Halkidi (10.1016/j.jbi.2023.104402_b0090) 2001; 17 Tegnander (10.1016/j.jbi.2023.104402_b0155) 2006; 28 Burgos-Artizzu (10.1016/j.jbi.2023.104402_b0050) 2020; 19 Deprest (10.1016/j.jbi.2023.104402_b0005) 2020; 47 Dube (10.1016/j.jbi.2023.104402_b0025) 2020; 4 |
| References_xml | – reference: Huang G, Liu Z, van de Maeeten L, Weinberger KQ. Densely connected convolutional networks. 2016. arxiv.org/abs/1608.06993. – volume: 21 start-page: 7975 year: 2021 ident: b0055 article-title: Generative adversarial networks to improve fetal brain fine-grained plane classification publication-title: Sensors – volume: 9 start-page: 3749 year: 2020 ident: b0010 article-title: Pregnancy and Childbirth in the COVID-19 Era - the course of disease and maternal-fetal transmission publication-title: J. Clin. Med. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b0165 article-title: Statistical comparison of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 49 start-page: 112 year: 2014 end-page: 118 ident: b0100 article-title: Evolutionary strategy to develop learning-based decision systems. Application to breast cancer and liver fibrosis stadialization publication-title: J Biomed Inf – volume: 28 start-page: 33 year: 2011 end-page: 44 ident: b0095 article-title: Competitive/collaborative neural computing system for medical diagnosis in pancreatic cancer detection publication-title: Exp Sys – volume: 1 start-page: 67 year: 1997 ident: b0085 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput – year: 1995 ident: b0110 article-title: Hand book of combinatorics – year: 2010 ident: b0105 article-title: Introductory combinatorics – volume: 19 start-page: 10200 year: 2020 ident: b0050 article-title: FETAL_PLANES_DB: common maternal-fetal ultrasound images publication-title: Nat Scientific Reports – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: b0170 article-title: Stacked generalization publication-title: Neural Networks – year: 2019 ident: b0075 article-title: Novel AI-guided ultrasound screening system for fetal heart can demonstrate finding in timeline diagram publication-title: Ultras Obstet Gynecol – reference: Howard A, Sandler M, et al. Searching for MobileNetV3. 2019. arxiv.org/abs/1905.02244. – volume: 46 start-page: 1 year: 2018 end-page: 14 ident: b0060 article-title: Fully automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning publication-title: Med Image Anal – volume: 9 start-page: 759 year: 2021 end-page: 772 ident: b0015 article-title: Effects of the COVID-19 pandemic on the maternal and perinatal outcomes: a systematic review and meta-analysis publication-title: Lancet Global Health – volume: 33 start-page: 159 year: 1997 end-page: 174 ident: b0160 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics – volume: 28 start-page: 822 year: 2008 end-page: 827 ident: b0030 article-title: A score-based method for quality control of fetal images at routine second trimester ultrasound examination publication-title: Prenat Diag – year: 1991 ident: b0150 article-title: Practical statistics for medical research – reference: Matsuoka R, Komatsu M, et al. A novel deep learning based system for fetal cardiac screening. Ultras Obstet Gynecol 2019. doi: 10.1002.uog.20945. – reference: Phillip M, et al. Convolutional Neural Networks for automated fetal cardiac assessment using 4D B-Mode ultrasound. In: IEEE 16 – volume: 17 start-page: 107 year: 2001 end-page: 145 ident: b0090 article-title: On clustering validation techniques publication-title: J Intell Inf Syst – reference: Int Symp Biomed Imag; 2019. p. 824–8. doi: 10.1109/ISBI.2019.9759377. – volume: 28 start-page: 8 year: 2006 end-page: 14 ident: b0155 article-title: The examiner’s ultrasound experience has a significant impact on the detection rate of congenital heart defect at the second trimester fetal examination publication-title: Ultras Obstet Gynecol – reference: Tan M, Le Q. EfficientNetV2: smaller models and faster training. 2021. arxiv.org/abs/2104.00298. – volume: 19 start-page: 317 year: 1965 end-page: 343 ident: b0115 article-title: Weighted voting doesn’t work: a mathematical analysis publication-title: Rutgers Law Rev – volume: 33 start-page: 720 year: 2009 end-page: 729 ident: b0035 article-title: Sonography in obese and overweight pregnant women: clinical, medicolegal and technical issues publication-title: Ultrasound Obstet Gynecol – reference: He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image recognition. 2015. arxiv.org/abs/1512.03385. – volume: 10 year: 2020 ident: b0020 article-title: Risk of congenital birth defects during COVID-19 pandemic: draw attention to the physicians and policymakers publication-title: J. Glob. Health – volume: 25 start-page: 44 year: 2019 end-page: 46 ident: b0040 article-title: High performances medicine: the convergence of human and artificial intelligence publication-title: Nat Med – volume: S1076–6332 start-page: 30575 year: 2019 end-page: 30576 ident: b0080 article-title: Assessment of radiomics and deep learning for the segmentation of fetal and maternal anatomy in magnetic resonance imagining and ultrasound publication-title: Acad Radiol – volume: 4 year: 2020 ident: b0025 article-title: COVID-19 in pregnancy: the foetal perspective-a systematic review publication-title: Neonatology – volume: 3 start-page: 118 year: 2020 ident: b0045 article-title: The state of artificial intelligence-based FDA approved medical devices and algorithms: an online database publication-title: NPJ Digit Med – reference: Chollet F, Xception: deep learning with depthwise separable convolutions. 2016. arxiv.org/abs/1610.02357. – reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception architecture for computer vision. 2015. arxiv.org/abs/1512.00567. – volume: 47 start-page: 689 year: 2020 end-page: 698 ident: b0005 article-title: Fetal diagnosis and therapy during the COVID-19 Pandemic: guidance on behalf of the international fetal medicine and surgery society publication-title: Fetal Diagn. Ther. – volume: 6 year: 2007 ident: b0175 article-title: Super learner publication-title: Stat Appl Genet Mol Biol – volume: 25 start-page: 44 year: 2019 ident: 10.1016/j.jbi.2023.104402_b0040 article-title: High performances medicine: the convergence of human and artificial intelligence publication-title: Nat Med doi: 10.1038/s41591-018-0300-7 – volume: 9 start-page: 759 issue: 6 year: 2021 ident: 10.1016/j.jbi.2023.104402_b0015 article-title: Effects of the COVID-19 pandemic on the maternal and perinatal outcomes: a systematic review and meta-analysis publication-title: Lancet Global Health doi: 10.1016/S2214-109X(21)00079-6 – volume: 28 start-page: 33 issue: 1 year: 2011 ident: 10.1016/j.jbi.2023.104402_b0095 article-title: Competitive/collaborative neural computing system for medical diagnosis in pancreatic cancer detection publication-title: Exp Sys doi: 10.1111/j.1468-0394.2010.00540.x – volume: 19 start-page: 10200 year: 2020 ident: 10.1016/j.jbi.2023.104402_b0050 article-title: FETAL_PLANES_DB: common maternal-fetal ultrasound images publication-title: Nat Scientific Reports doi: 10.1038/s41598-020-67076-5 – volume: 49 start-page: 112 year: 2014 ident: 10.1016/j.jbi.2023.104402_b0100 article-title: Evolutionary strategy to develop learning-based decision systems. Application to breast cancer and liver fibrosis stadialization publication-title: J Biomed Inf doi: 10.1016/j.jbi.2014.02.001 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.jbi.2023.104402_b0165 article-title: Statistical comparison of classifiers over multiple data sets publication-title: J Mach Learn Res – volume: 21 start-page: 7975 issue: 33 year: 2021 ident: 10.1016/j.jbi.2023.104402_b0055 article-title: Generative adversarial networks to improve fetal brain fine-grained plane classification publication-title: Sensors doi: 10.3390/s21237975 – ident: 10.1016/j.jbi.2023.104402_b0070 – volume: 19 start-page: 317 issue: 2 year: 1965 ident: 10.1016/j.jbi.2023.104402_b0115 article-title: Weighted voting doesn’t work: a mathematical analysis publication-title: Rutgers Law Rev – volume: 6 issue: 1 year: 2007 ident: 10.1016/j.jbi.2023.104402_b0175 article-title: Super learner publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1309 – volume: 9 start-page: 3749 issue: 11 year: 2020 ident: 10.1016/j.jbi.2023.104402_b0010 article-title: Pregnancy and Childbirth in the COVID-19 Era - the course of disease and maternal-fetal transmission publication-title: J. Clin. Med. doi: 10.3390/jcm9113749 – year: 2010 ident: 10.1016/j.jbi.2023.104402_b0105 – volume: 10 issue: 2 year: 2020 ident: 10.1016/j.jbi.2023.104402_b0020 article-title: Risk of congenital birth defects during COVID-19 pandemic: draw attention to the physicians and policymakers publication-title: J. Glob. Health doi: 10.7189/jogh.10.020378 – volume: 28 start-page: 8 year: 2006 ident: 10.1016/j.jbi.2023.104402_b0155 article-title: The examiner’s ultrasound experience has a significant impact on the detection rate of congenital heart defect at the second trimester fetal examination publication-title: Ultras Obstet Gynecol doi: 10.1002/uog.2804 – ident: 10.1016/j.jbi.2023.104402_b0145 doi: 10.1109/CVPR.2017.195 – volume: 4 issue: 1 year: 2020 ident: 10.1016/j.jbi.2023.104402_b0025 article-title: COVID-19 in pregnancy: the foetal perspective-a systematic review publication-title: Neonatology – year: 1991 ident: 10.1016/j.jbi.2023.104402_b0150 – year: 1995 ident: 10.1016/j.jbi.2023.104402_b0110 – volume: 33 start-page: 720 issue: 6 year: 2009 ident: 10.1016/j.jbi.2023.104402_b0035 article-title: Sonography in obese and overweight pregnant women: clinical, medicolegal and technical issues publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.6393 – volume: 46 start-page: 1 year: 2018 ident: 10.1016/j.jbi.2023.104402_b0060 article-title: Fully automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning publication-title: Med Image Anal doi: 10.1016/j.media.2018.02.006 – volume: 47 start-page: 689 year: 2020 ident: 10.1016/j.jbi.2023.104402_b0005 article-title: Fetal diagnosis and therapy during the COVID-19 Pandemic: guidance on behalf of the international fetal medicine and surgery society publication-title: Fetal Diagn. Ther. doi: 10.1159/000508254 – volume: 33 start-page: 159 issue: 1 year: 1997 ident: 10.1016/j.jbi.2023.104402_b0160 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – volume: 3 start-page: 118 year: 2020 ident: 10.1016/j.jbi.2023.104402_b0045 article-title: The state of artificial intelligence-based FDA approved medical devices and algorithms: an online database publication-title: NPJ Digit Med doi: 10.1038/s41746-020-00324-0 – volume: S1076–6332 start-page: 30575 year: 2019 ident: 10.1016/j.jbi.2023.104402_b0080 article-title: Assessment of radiomics and deep learning for the segmentation of fetal and maternal anatomy in magnetic resonance imagining and ultrasound publication-title: Acad Radiol – ident: 10.1016/j.jbi.2023.104402_b0120 doi: 10.1109/CVPR.2016.90 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 10.1016/j.jbi.2023.104402_b0170 article-title: Stacked generalization publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80023-1 – ident: 10.1016/j.jbi.2023.104402_b0125 doi: 10.1109/CVPR.2017.243 – ident: 10.1016/j.jbi.2023.104402_b0135 – volume: 28 start-page: 822 issue: 9 year: 2008 ident: 10.1016/j.jbi.2023.104402_b0030 article-title: A score-based method for quality control of fetal images at routine second trimester ultrasound examination publication-title: Prenat Diag doi: 10.1002/pd.2016 – ident: 10.1016/j.jbi.2023.104402_b0065 doi: 10.1109/ISBI.2019.8759377 – volume: 17 start-page: 107 year: 2001 ident: 10.1016/j.jbi.2023.104402_b0090 article-title: On clustering validation techniques publication-title: J Intell Inf Syst doi: 10.1023/A:1012801612483 – year: 2019 ident: 10.1016/j.jbi.2023.104402_b0075 article-title: Novel AI-guided ultrasound screening system for fetal heart can demonstrate finding in timeline diagram publication-title: Ultras Obstet Gynecol doi: 10.1002/uog.20796 – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.jbi.2023.104402_b0085 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – ident: 10.1016/j.jbi.2023.104402_b0130 doi: 10.1109/CVPR.2016.308 – ident: 10.1016/j.jbi.2023.104402_b0140 doi: 10.1109/ICCV.2019.00140 |
| SSID | ssj0011556 |
| Score | 2.430233 |
| Snippet | [Display omitted]
The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology... The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104402 |
| SubjectTerms | Deep learning Fetal morphology Performance analysis Statistical assessment Weighted voting |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KH9QioufX-cUIPim5y3b3ssljqdYinC9a6Nuy2Wwk5ZoL9oIVwb_dmezmqCgVfAgkIQvDzuzOLzsfP4BXmr1Epm2Se6cS5WVKS6rUSZ25MlcFeQ3L5x3Lj9nxifpwujjdgcOxFobTKuPeH_b0YbeOb-ZxNudd08w_CeY0UISfZaj45Ap2pZnFYPZzm-ZBgGdgcOWPOY1RjZHNIcfrrGxmzB_OkU4VT1b-4pv-xJ57cLNvO_v9m12trvijo7twJwJJPAiy3oMd305g70p7wQncWMbA-QRuh-M5DFVH9-HHW-87jJQRX9C2Fb63_QVXVOKyueSwAjJN2tCxG92q534KfHveXM7wAAmM49iOHAn3Yu0JxeP5mtQ2HNQjhxyw41RaHElYNsEMHsDJ0bvPh8dJ5GFInCyyTSIqT_8xztapE7XQldVp5nLlC0tXIYXVlah9qUVVZTKrc5_X0lVOcJmuk_W-fAi77br1jwHTyhcLbwl2CalK5_J96wqfS79QnkYWU0hHDRgXm5QzV8bKjNloZ4aUZlhpJihtCq-3Q7rQoeO6j9WoVvObmRnyINcNezmagKHlxzEVmr51f2G4mRahXrkg0R8F29hKIenvWhN-m8KbrbH8W8Qn_yfiU7jFTyGT-Bnsbr72_jnhpU35YlgQvwCvhRD_ priority: 102 providerName: Elsevier |
| Title | Deep learning and Gaussian Mixture Modelling clustering mix. A new approach for fetal morphology view plane differentiation |
| URI | https://dx.doi.org/10.1016/j.jbi.2023.104402 https://www.ncbi.nlm.nih.gov/pubmed/37217028 https://www.proquest.com/docview/2818054359 https://doi.org/10.1016/j.jbi.2023.104402 |
| UnpaywallVersion | publishedVersion |
| Volume | 143 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1532-0480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0480 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1532-0480 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0480 databaseCode: ACRLP dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1532-0480 dateEnd: 20241031 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0480 databaseCode: AIKHN dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1532-0480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0480 databaseCode: .~1 dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1532-0480 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0480 databaseCode: IXB dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1532-0480 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0480 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1532-0480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0480 databaseCode: AKRWK dateStart: 20010201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB5BK4FWiKMcWwSVkXgCJYpr53osx9IFteKBSuXJchxn1aWbVttELCDx25mpk7JcCzxEciQ7csZjzWfPzDcAj2OyElGsvcQa6UkrAtxSWewVkckSmaLV0HTfMZlG45l8PQ_nDVk05cL84L_fxmEdZwufanyTN1ISbWQ3ChF2d6A7m74dvXd8qEMKUZTf28nOg_m7b_zJBv2KMffgal2u9aePerk8Z3cObriIrc2WrpDCTT74dZX55vNPZI7_9Es34XqDPtnIqcstuGTLHuyd4yTswZVJ423vwTV3p8dcqtJt-PLC2jVr6kwcMV3m7JWuN5SGySaLM_JFMKqttqX5ZmZZEwkDNU8WZz4bMUTwrOUwZwiWWWER-rOTFa719nafkZ-CrSn-lrWVWyqnO3dgdvDy3fOx1xRv8IxIo8rjucXDj9FFYHjB41zHQWQSaVONTyq4jnNe2CzmeR6JqEhsUgiTG065vUYUQ3EXOuWqtPvAgtymodWI1biQmTHJUJvUJsKG0uLItA9Bu5zKNMzmVGBjqdoQtmOFIlckcuVE3ocnuyFrR-txUWfZ6ohqcInDGwqX9qJhj1p9UrhnyRGD4lvVG0UMXAiVRYhTv-cUbTcLgUfyGEFfH57uNO_vU7z_X70fQKc6re1DhFNVNoDL_lc-gO7o8M14im-H82eDZnN9A4qzHH0 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qBdtSRE9br36t4JOSu-ztJps8lmo9tdcXW-jbstlsJOWaC-0FK4J_uzPZ5KgoFXwIhGQXhp3Znd_OJ8BrRVoiViZInJWBdCLELZWpoIhtlsgUtYYhe8fsOJ6eyk9n0dkaHPS5MBRW2Z39_kxvT-vuy7hbzXFdluMvnHoaSMTPwmd83oG7MpoouoGNfq7iPBDxtC1caTTFMcretdkGeZ1n5YgaiJOrU3amlb8opz_B5xZsNFVtvn8z8_kNhXT4AO53SJLte2IfwpqrBrB1o77gAO7NOs_5ALa9fY75tKNH8OOdczXrekZ8ZabK2QfTXFFKJZuV1-RXYNQnrS3Zzey8oYIK9HpRXo_YPkM0zvp65AyBLyscwnh2sUC-tZZ6Rj4HVlMsLeu7sCy9HDyG08P3JwfToGvEEFiRxsuA5w4vMtYUoeUFV7lRYWwT6VKDTyq4UTkvXKZ4nsciLhKXFMLmllOerhXFROzAerWo3BNgYe7SyBnEXVzIzNpkYmzqEuEi6XBmOoSw54C2XZVyapYx13042rlGpmlimvZMG8Kb1ZTal-i4bbDs2ap_kzONKuS2aa96EdC4_8ipgsu3aK40VdNC2CsiJH3Xy8aKCoHXa4UAbghvV8LybxL3_o_El7AxPZkd6aOPx5-fwib98WHFz2B9edm45wieltmLdnP8AnLQFCI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB-kB8ohftSvisoIPilbdpvs12NRz0Po4YOF8ylks7PSs7ctdhdP_eedaXbr-XXqw0IekpCdTJhfMjO_AXiSipVIUhtk5HSgSYV8pIo0qBJXZDpnq2HlvWN2lBzO9evj-Lgji5ZcmB_899s4rJNiMZYa3-KN1EIbuZfEDLsHsDc_ejN95_lQJxKiqL-3s50H83dz_MkG_Yox9-FKW6_t5092uTxndw6u-4itzZauUMJNPozbphi7Lz-ROf7TL92Aax36xKlXl5twieoh7J_jJBzC5VnnbR_CVf-mhz5V6RZ8fUG0xq7OxHu0dYmvbLuRNEycLc7EF4FSW21L841u2QoJgzRPF2djnCIjeOw5zJHBMlbE0B9PV7zX29d9FD8FriX-FvvKLY3XndswP3j59vlh0BVvCJzKkyaISuLLj7NV6KIqSkubhonLNOWWv1xFNi2jioo0KstEJVVGWaVc6SLJ7XWqmqg7MKhXNd0DDEvKY7KM1SKlC-eyiXU5ZYpiTTwyH0HYb6dxHbO5FNhYmj6E7cSwyI2I3HiRj-Dpbsja03pc1Fn3OmI6XOLxhuGtvWjY416fDJ9ZccSw-FbtxggDF0NlFfPS73pF261C8ZU8ZdA3gmc7zfv7Eu__V-8HMGg-tvSQ4VRTPOoO0jd73xjt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+and+Gaussian+Mixture+Modelling+clustering+mix.+A+new+approach+for+fetal+morphology+view+plane+differentiation&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Belciug%2C+Smaranda&rft.au=Iliescu%2C+Dominic+Gabriel&rft.date=2023-07-01&rft.issn=1532-0464&rft.volume=143&rft.spage=104402&rft_id=info:doi/10.1016%2Fj.jbi.2023.104402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbi_2023_104402 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon |