Deep learning and Gaussian Mixture Modelling clustering mix. A new approach for fetal morphology view plane differentiation
[Display omitted] The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be estab...
Saved in:
| Published in | Journal of biomedical informatics Vol. 143; p. 104402 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0464 1532-0480 1532-0480 |
| DOI | 10.1016/j.jbi.2023.104402 |
Cover
| Summary: | [Display omitted]
The last three years have been a game changer in the way medicine is practiced. The COVID-19 pandemic changed the obstetrics and gynecology scenery. Pregnancy complications, and even death, are preventable due to maternal-fetal monitoring. A fast and accurate diagnosis can be established by a doctor + Artificial Intelligence combo. The aim of this paper is to propose a framework designed as a merger between Deep learning algorithms and Gaussian Mixture Modelling clustering applied in differentiating between the view planes of a second trimester fetal morphology scan. The deep learning methods chosen for this approach were ResNet50, DenseNet121, InceptionV3, EfficientNetV2S, MobileNetV3Large, and Xception. The framework establishes a hierarchy of the component networks using a statistical fitness function and the Gaussian Mixture Modelling clustering method, followed by a synergetic weighted vote of the algorithms that gives the final decision. We have tested the framework on two second trimester morphology scan datasets. A thorough statistical benchmarking process has been provided to validate our results. The experimental results showed that the synergetic vote of the framework outperforms the vote of each stand-alone deep learning network, hard voting, soft voting, and bagging strategy. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1532-0464 1532-0480 1532-0480 |
| DOI: | 10.1016/j.jbi.2023.104402 |