LLP-GAN: A GAN-Based Algorithm for Learning From Label Proportions

Learning from label proportions (LLP) is a widespread and important learning paradigm: only the bag-level proportional information of the grouped training instances is available for the classification task, instead of the instance-level labels in the fully supervised scenario. As a result, LLP is a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 11; pp. 8377 - 8388
Main Authors Liu, Jiabin, Wang, Bo, Hang, Hanyuan, Wang, Huadong, Qi, Zhiquan, Tian, Yingjie, Shi, Yong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2022.3149926

Cover

More Information
Summary:Learning from label proportions (LLP) is a widespread and important learning paradigm: only the bag-level proportional information of the grouped training instances is available for the classification task, instead of the instance-level labels in the fully supervised scenario. As a result, LLP is a typical weakly supervised learning protocol and commonly exists in privacy protection circumstances due to the sensitivity in label information for real-world applications. In general, it is less laborious and more efficient to collect label proportions as the bag-level supervised information than the instance-level one. However, the hint for learning the discriminative feature representation is also limited as a less informative signal directly associated with the labels is provided, thus deteriorating the performance of the final instance-level classifier. In this article, delving into the label proportions, we bypass this weak supervision by leveraging generative adversarial networks (GANs) to derive an effective algorithm LLP-GAN. Endowed with an end-to-end structure, LLP-GAN performs approximation in the light of an adversarial learning mechanism without imposing restricted assumptions on distribution. Accordingly, the final instance-level classifier can be directly induced upon the discriminator with minor modification. Under mild assumptions, we give the explicit generative representation and prove the global optimality for LLP-GAN. In addition, compared with existing methods, our work empowers LLP solvers with desirable scalability inheriting from deep models. Extensive experiments on benchmark datasets and a real-world application demonstrate the vivid advantages of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3149926