Peculiar near-band-edge emission of polarization-dependent XEOL from a non-polar a-plane ZnO wafer
Polarization-dependent hard X-ray excited optical luminescence (XEOL) was used to study not only the optical properties but also the crystallographic orientations of a non-polar a-plane ZnO wafer. In addition to a positive-edge jump and extra oscillations in the near-band-edge (NBE) XEOL yield, we o...
Saved in:
Published in | Optics express Vol. 26; no. 3; p. 2731 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
05.02.2018
|
Online Access | Get full text |
ISSN | 1094-4087 1094-4087 |
DOI | 10.1364/OE.26.002731 |
Cover
Summary: | Polarization-dependent hard X-ray excited optical luminescence (XEOL) was used to study not only the optical properties but also the crystallographic orientations of a non-polar a-plane ZnO wafer. In addition to a positive-edge jump and extra oscillations in the near-band-edge (NBE) XEOL yield, we observed a blue shift of the NBE emission peak that follows the polarization-dependent X-ray absorption near-edge structure (XANES) as the X-ray energy is tuned across the Zn K-edge. This NBE blue shift is caused by the larger X-ray absorption, generating higher free carriers to reduce the exciton-LO phonon coupling, which causes a decrease in the exciton activation energy. The extra oscillations in XANES and XEOL as the polarization is set parallel to the c-axis is attributed to simultaneous excitations of the Zn 4p - O 2pπ -bond along the c-axis and the bilayer σ-bond, whereas only the σ-bond is excited when the polarization is perpendicular to the c-axis. The polarization-dependent XEOL spectra can be used to determine the crystallographic orientations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.002731 |