LOWER ESTIMATES FOR THE GROWTH OF THE FOURTH AND THE SECOND PAINLEVÉ TRANSCENDENTS
Let $w(z)$ be an arbitrary transcendental solution of the fourth (respectively, second) Painlevé equation. Concerning the frequency of poles in $|z|\le r$, it is shown that $n(r,w)\gg r^2$ (respectively, $n(r,w)\gg r^{3/2}$), from which the growth estimate $T(r,w)\gg r^2$ (respectively, $T(r,w)\gg r...
Saved in:
Published in | Proceedings of the Edinburgh Mathematical Society Vol. 47; no. 1; pp. 231 - 249 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.02.2004
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-0915 1464-3839 |
DOI | 10.1017/S0013091503000440 |
Cover
Summary: | Let $w(z)$ be an arbitrary transcendental solution of the fourth (respectively, second) Painlevé equation. Concerning the frequency of poles in $|z|\le r$, it is shown that $n(r,w)\gg r^2$ (respectively, $n(r,w)\gg r^{3/2}$), from which the growth estimate $T(r,w)\gg r^2$ (respectively, $T(r,w)\gg r^{3/2}$) immediately follows. AMS 2000 Mathematics subject classification: Primary 34M55; 34M10 |
---|---|
Bibliography: | PII:S0013091503000440 ark:/67375/6GQ-1G53HL8P-5 ArticleID:00044 istex:F85112866EF17ED656148EB4376CA579C122D5E3 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091503000440 |