LOWER ESTIMATES FOR THE GROWTH OF THE FOURTH AND THE SECOND PAINLEVÉ TRANSCENDENTS

Let $w(z)$ be an arbitrary transcendental solution of the fourth (respectively, second) Painlevé equation. Concerning the frequency of poles in $|z|\le r$, it is shown that $n(r,w)\gg r^2$ (respectively, $n(r,w)\gg r^{3/2}$), from which the growth estimate $T(r,w)\gg r^2$ (respectively, $T(r,w)\gg r...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Edinburgh Mathematical Society Vol. 47; no. 1; pp. 231 - 249
Main Author Shimomura, Shun
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2004
Subjects
Online AccessGet full text
ISSN0013-0915
1464-3839
DOI10.1017/S0013091503000440

Cover

More Information
Summary:Let $w(z)$ be an arbitrary transcendental solution of the fourth (respectively, second) Painlevé equation. Concerning the frequency of poles in $|z|\le r$, it is shown that $n(r,w)\gg r^2$ (respectively, $n(r,w)\gg r^{3/2}$), from which the growth estimate $T(r,w)\gg r^2$ (respectively, $T(r,w)\gg r^{3/2}$) immediately follows. AMS 2000 Mathematics subject classification: Primary 34M55; 34M10
Bibliography:PII:S0013091503000440
ark:/67375/6GQ-1G53HL8P-5
ArticleID:00044
istex:F85112866EF17ED656148EB4376CA579C122D5E3
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091503000440