Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution
Efficient and economical photocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are required to replace expensive metal-based catalysts used in water splitting devices. Herein, we have developed an inexpensive route to synthesize a carbon-rich graphitic car...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 31; pp. 15310 - 15319 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/C8TA03303J |
Cover
Summary: | Efficient and economical photocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are required to replace expensive metal-based catalysts used in water splitting devices. Herein, we have developed an inexpensive route to synthesize a carbon-rich graphitic carbon nitride (C-rich g-C
3
N
4
) with both nitrogen vacancies and a porous structure, which, as a highly efficient photo-induced water splitting catalyst, can meet current demands. The effects of the porous structure, nitrogen vacancies and rich amount of carbon on the electronic band structure and charge transport of g-C
3
N
4
are systematically elucidated. The C-rich g-C
3
N
4
can not only effectively enhance the absorption of visible light, but can also improve the majority carrier mobility and promote photoelectron transport through the defect-induced mid-gap and multiple conductive carbon rings, thus synergistically elongating the diffusion length and lifetime of the photocarriers. Importantly, the metal-free C-rich g-C
3
N
4
photocatalyst not only demonstrates a higher solar-driven hydrogen production performance, which is over 20.5 times that of pristine g-C
3
N
4
, but also exhibits an outstanding stability with minimal loss of catalytic activity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2050-7488 2050-7496 2050-7496 |
DOI: | 10.1039/C8TA03303J |