Long-Term Non Anesthetic Preclinical Study Available Extra-Cranial Brain Activator (ECBA) System for the Future Minimally Invasive Human Neuro Modulation
In recent years, electroceuticals have been spotlighted as an emerging treatment for various severe chronic brain diseases, owing to their intrinsic advantage of electrical interaction with the brain, which is the most electrically active organ. However, the majority of research has verified only th...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 14; no. 6; pp. 1393 - 1406 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4545 1940-9990 1940-9990 |
DOI | 10.1109/TBCAS.2020.3034444 |
Cover
Summary: | In recent years, electroceuticals have been spotlighted as an emerging treatment for various severe chronic brain diseases, owing to their intrinsic advantage of electrical interaction with the brain, which is the most electrically active organ. However, the majority of research has verified only the short-term efficacy through acute studies in laboratory tests owing to the lack of a reliable miniaturized platform for long-term animal studies. The construction of a sufficient integrated system for such a platform is extremely difficult because it requires multi-disciplinary work using state-of-the-art technologies in a wide range of fields. In this study, we propose a complete system of an implantable platform for long-term preclinical brain studies. Our proposed system, the extra-cranial brain activator (ECBA), consists of a titanium-packaged implantable module and a helmet-type base station that powers the module wirelessly. The ECBA can also be controlled by a remote handheld device. Using the ECBA, we performed a long-term non-anesthetic study with multiple canine subjects, and the resulting PET-CT scans demonstrated remarkable enhancement in brain activity relating to memory and sensory skills. Furthermore, the histological analysis and high-temperature aging test confirmed the reliability of the system for up to 31 months. Hence, the proposed ECBA system is expected to lead a new paradigm of human neuromodulation studies in the near future. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1932-4545 1940-9990 1940-9990 |
DOI: | 10.1109/TBCAS.2020.3034444 |