Multi-objective sustainable process plan generation in a reconfigurable manufacturing environment: exact and adapted evolutionary approaches
Achieving competitiveness in nowadays manufacturing market goes through being cost and time-efficient as well as environmentally harmless. Reconfigurable manufacturing system (RMS) is a paradigm that is able to meet these challenges due to its scalability and integrability. In this paper, we aim to...
Saved in:
| Published in | International journal of production research Vol. 57; no. 8; pp. 2531 - 2547 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Taylor & Francis
18.04.2019
Taylor & Francis LLC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0020-7543 1366-588X |
| DOI | 10.1080/00207543.2018.1522006 |
Cover
| Summary: | Achieving competitiveness in nowadays manufacturing market goes through being cost and time-efficient as well as environmentally harmless. Reconfigurable manufacturing system (RMS) is a paradigm that is able to meet these challenges due to its scalability and integrability. In this paper, we aim to solve the multi-objective sustainable process plan generation problem in a reconfigurable environment. In addition to the total production cost and the completion time, we use the amount of greenhouse gases (GHG) emitted during the manufacturing process as a sustainability criterion. We propose an iterative multi-objective integer linear programming (I-MOILP) approach and its comparison with adapted versions of the two well-known evolutionary algorithms, respectively, the Archived Multi-Objective Simulated Annealing (AMOSA) and the Non-dominated Sorting Genetic Algorithm (NSGA-II). Moreover, we study the influence of the probabilities of genetic operators on the convergence of the adapted NSGA-II. To illustrate the applicability of the three approaches, an example is presented and obtained numerical results analysed. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0020-7543 1366-588X |
| DOI: | 10.1080/00207543.2018.1522006 |