Linear analysis of the dynamic response of a riser subject to internal solitary waves
The flow field induced by internal solitary waves (ISWs) is peculiar wherein water motion occurs in the whole water depth, and the strong shear near the pycnocline can be generated due to the opposite flow direction between the upper and lower layers, which is a potential threat to marine risers. In...
Saved in:
Published in | Applied mathematics and mechanics Vol. 44; no. 6; pp. 1023 - 1034 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V School of Engineering Sciences,University of Chinese Academy of Sciences,Beijing 100049,China Beijing Electro-Mechanical Engineering Institute,Beijing 100074,China%Key laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China%Key laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China Key laboratory for Mechanics in Fluid Solid Coupling Systems,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
ISSN | 0253-4827 1573-2754 |
DOI | 10.1007/s10483-023-3006-9 |
Cover
Summary: | The flow field induced by internal solitary waves (ISWs) is peculiar wherein water motion occurs in the whole water depth, and the strong shear near the pycnocline can be generated due to the opposite flow direction between the upper and lower layers, which is a potential threat to marine risers. In this paper, the flow field of ISWs is obtained with the Korteweg-de Vries (KdV) equation for a two-layer fluid system. Then, a linear analysis is performed for the dynamic response of a riser with its two ends simply supported under the action of ISWs. The explicit expressions of the deflection and the moment of the riser are deduced based on the modal superposition method. The applicable conditions of the theoretical expressions are discussed. Through comparisons with the finite element simulations for nonlinear dynamic responses, it is proved that the theoretical expressions can roughly reveal the nonlinear dynamic response of risers under ISWs when the approximation for the linear analysis is relaxed to some extent. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0253-4827 1573-2754 |
DOI: | 10.1007/s10483-023-3006-9 |