Deoxynivalenol Impairs Porcine Intestinal Barrier Function and Decreases the Protein Expression of Claudin-4 through a Mitogen-Activated Protein Kinase-Dependent Mechanism
Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 prot...
Saved in:
Published in | The Journal of nutrition Vol. 140; no. 11; pp. 1956 - 1962 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
American Society for Nutrition
01.11.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3166 1541-6100 1541-6100 |
DOI | 10.3945/jn.110.123919 |
Cover
Abstract | Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 protein, a tight junction protein. The mechanism by which DON alters the intestinal barrier function remains poorly characterized. Therefore, we investigated the involvement of mitogen-activated protein kinases (MAPK) in the DON-induced loss of barrier function. We first verified that 30 μmol/L of DON activated MAPK in a highly sensitive porcine intestinal epithelial cell line (IPEC-1). Inhibition of p44/42 extracellular signal-regulated kinase (ERK) phosphorylation, with 0.5 μmol/L of the specific MAPK pharmacological inhibitor U0126 for 2 h, restored the barrier function of the differentiated intestinal epithelial cell monolayers. The restoration of barrier function was evaluated by trans-epithelial electrical resistance measurements and tracer flux paracellular permeability experiments. The U0126 also restored the intestinal expression of claudin-4 protein, thereby demonstrating that MAPK activation is involved in claudin-4 protein expression and claudin-4 is involved in the maintenance of the intestinal epithelial cell barrier function. Further experiments indicated that p44/42 ERK is not involved in the transcriptional regulation of claudin-4. In conclusion, we demonstrated that DON-induced activation of the p44/42 ERK signaling pathway inhibits the expression of claudin-4 protein, which leads to impaired intestinal barrier function. Given the high levels of DON in cereal grains, these observations of impaired barrier function have implications for human and animal health. |
---|---|
AbstractList | Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 protein, a tight junction protein. The mechanism by which DON alters the intestinal barrier function remains poorly characterized. Therefore, we investigated the involvement of mitogen-activated protein kinases (MAPK) in the DON-induced loss of barrier function. We first verified that 30 μmol/L of DON activated MAPK in a highly sensitive porcine intestinal epithelial cell line (IPEC-1). Inhibition of p44/42 extracellular signal-regulated kinase (ERK) phosphorylation, with 0.5 μmol/L of the specific MAPK pharmacological inhibitor U0126 for 2 h, restored the barrier function of the differentiated intestinal epithelial cell monolayers. The restoration of barrier function was evaluated by trans-epithelial electrical resistance measurements and tracer flux paracellular permeability experiments. The U0126 also restored the intestinal expression of claudin-4 protein, thereby demonstrating that MAPK activation is involved in claudin-4 protein expression and claudin-4 is involved in the maintenance of the intestinal epithelial cell barrier function. Further experiments indicated that p44/42 ERK is not involved in the transcriptional regulation of claudin-4. In conclusion, we demonstrated that DON-induced activation of the p44/42 ERK signaling pathway inhibits the expression of claudin-4 protein, which leads to impaired intestinal barrier function. Given the high levels of DON in cereal grains, these observations of impaired barrier function have implications for human and animal health.Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 protein, a tight junction protein. The mechanism by which DON alters the intestinal barrier function remains poorly characterized. Therefore, we investigated the involvement of mitogen-activated protein kinases (MAPK) in the DON-induced loss of barrier function. We first verified that 30 μmol/L of DON activated MAPK in a highly sensitive porcine intestinal epithelial cell line (IPEC-1). Inhibition of p44/42 extracellular signal-regulated kinase (ERK) phosphorylation, with 0.5 μmol/L of the specific MAPK pharmacological inhibitor U0126 for 2 h, restored the barrier function of the differentiated intestinal epithelial cell monolayers. The restoration of barrier function was evaluated by trans-epithelial electrical resistance measurements and tracer flux paracellular permeability experiments. The U0126 also restored the intestinal expression of claudin-4 protein, thereby demonstrating that MAPK activation is involved in claudin-4 protein expression and claudin-4 is involved in the maintenance of the intestinal epithelial cell barrier function. Further experiments indicated that p44/42 ERK is not involved in the transcriptional regulation of claudin-4. In conclusion, we demonstrated that DON-induced activation of the p44/42 ERK signaling pathway inhibits the expression of claudin-4 protein, which leads to impaired intestinal barrier function. Given the high levels of DON in cereal grains, these observations of impaired barrier function have implications for human and animal health. Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 protein, a tight junction protein. The mechanism by which DON alters the intestinal barrier function remains poorly characterized. Therefore, we investigated the involvement of mitogen-activated protein kinases (MAPK) in the DON-induced loss of barrier function. We first verified that 30 μmol/L of DON activated MAPK in a highly sensitive porcine intestinal epithelial cell line (IPEC-1). Inhibition of p44/42 extracellular signal-regulated kinase (ERK) phosphorylation, with 0.5 μmol/L of the specific MAPK pharmacological inhibitor U0126 for 2 h, restored the barrier function of the differentiated intestinal epithelial cell monolayers. The restoration of barrier function was evaluated by trans-epithelial electrical resistance measurements and tracer flux paracellular permeability experiments. The U0126 also restored the intestinal expression of claudin-4 protein, thereby demonstrating that MAPK activation is involved in claudin-4 protein expression and claudin-4 is involved in the maintenance of the intestinal epithelial cell barrier function. Further experiments indicated that p44/42 ERK is not involved in the transcriptional regulation of claudin-4. In conclusion, we demonstrated that DON-induced activation of the p44/42 ERK signaling pathway inhibits the expression of claudin-4 protein, which leads to impaired intestinal barrier function. Given the high levels of DON in cereal grains, these observations of impaired barrier function have implications for human and animal health. |
Author | Oswald, Isabelle P Braicu, Cornelia Taranu, Ionelia Nougayrede, Jean-Philippe Pinton, Philippe Laffitte, Joëlle |
Author_xml | – sequence: 1 fullname: Pinton, Philippe – sequence: 2 fullname: Braicu, Cornelia – sequence: 3 fullname: Nougayrede, Jean-Philippe – sequence: 4 fullname: Laffitte, Joëlle – sequence: 5 fullname: Taranu, Ionelia – sequence: 6 fullname: Oswald, Isabelle P |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23411465$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20861219$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02935487$$DView record in HAL |
BookMark | eNqF0s1uEzEQAOAVKqJp4cgVfEGIwxb_7G7sY0haGpGKStDzauKdTRxt7GB7o_aZeEkcbQgSEuJky_rGHs_MRXZmncUse83olVBF-XFjr1jaMy4UU8-yESsLlleM0rNsRCnnuWBVdZ5dhLChlLJCyRfZOaeyYpypUfZzhu7xyZo9dGhdR-bbHRgfyL3z2lgkcxsxRGOhI5_Ae4Oe3PRWR-MsAduQGWqPEDCQuEZy711EY8n1485jCAfkWjLtoG-MzYtkvOtXawLkzkS3QptP0lV7iNicYr-kxwLmM9yhbdBGcod6DdaE7cvseQtdwFfH9TJ7uLn-Pr3NF18_z6eTRa6FEjHnLWipZVMwtUSsFIWyxEKgRM5bDrSSCsqi1bis2BhaigobyVFrIXQLqhKX2Yfh3jV09c6bLfin2oGpbyeL-nBGuRJlIcd7luz7we68-9GnUtVbEzR2HVh0fahlyUrFU93_K8elkuNKMpXkm6Psl1tsTin87loC744Agoau9WC1CX-cKBgrqjK5fHDauxA8tifCaH2Ynnpj6zQ99TA9yYu_vDYRDr2OHkz3z6i3Q1QLroaVT5k8fEtfFpQpysaSi18BbdM- |
CODEN | JONUAI |
CitedBy_id | crossref_primary_10_1155_2020_5974157 crossref_primary_10_1152_ajpgi_00092_2018 crossref_primary_10_1016_j_fct_2018_09_050 crossref_primary_10_1007_s42994_023_00096_7 crossref_primary_10_1080_1745039X_2013_776327 crossref_primary_10_1093_jas_skaa206 crossref_primary_10_1016_j_fct_2018_01_013 crossref_primary_10_1016_j_jia_2024_07_037 crossref_primary_10_1007_s12550_012_0135_x crossref_primary_10_1016_j_scitotenv_2023_165722 crossref_primary_10_3390_toxins13030189 crossref_primary_10_3390_toxins13060393 crossref_primary_10_1016_j_envint_2019_105082 crossref_primary_10_3390_toxins11110670 crossref_primary_10_1093_toxsci_kft145 crossref_primary_10_1080_1745039X_2019_1641369 crossref_primary_10_1007_s12349_013_0125_3 crossref_primary_10_3945_jn_110_137588 crossref_primary_10_1016_j_psj_2024_103816 crossref_primary_10_1016_j_taap_2021_115441 crossref_primary_10_3389_fmicb_2021_687533 crossref_primary_10_1016_j_anifeedsci_2016_06_006 crossref_primary_10_1080_10408398_2021_1954598 crossref_primary_10_3390_toxins10050183 crossref_primary_10_3390_toxins3101263 crossref_primary_10_3390_toxins8110345 crossref_primary_10_1016_j_cbi_2016_11_018 crossref_primary_10_3390_toxins11010018 crossref_primary_10_4161_tisb_24978 crossref_primary_10_1016_j_fct_2022_113044 crossref_primary_10_1093_jas_skae107 crossref_primary_10_1002_mnfr_201000402 crossref_primary_10_1186_s12864_016_2830_z crossref_primary_10_1007_s12035_015_9262_7 crossref_primary_10_1038_s41598_019_55821_4 crossref_primary_10_3390_toxins5050912 crossref_primary_10_3390_toxins6051615 crossref_primary_10_1007_s00204_016_1902_9 crossref_primary_10_1186_s12864_016_2984_8 crossref_primary_10_14814_phy2_12090 crossref_primary_10_3390_toxins14050315 crossref_primary_10_1016_j_envpol_2024_125138 crossref_primary_10_1016_j_tjnut_2025_02_020 crossref_primary_10_3389_fmicb_2023_1259133 crossref_primary_10_3920_BM2018_0023 crossref_primary_10_3390_ijms20112777 crossref_primary_10_1016_j_ecoenv_2020_111376 crossref_primary_10_1016_j_tox_2016_05_003 crossref_primary_10_3390_toxins11120727 crossref_primary_10_1007_s00204_014_1284_9 crossref_primary_10_1021_acsfoodscitech_3c00434 crossref_primary_10_1016_j_taap_2015_04_002 crossref_primary_10_1186_s40104_022_00822_z crossref_primary_10_1093_jmicro_dfy005 crossref_primary_10_3390_toxins15020120 crossref_primary_10_3390_toxins8090264 crossref_primary_10_1007_s00204_017_2118_3 crossref_primary_10_1016_j_toxlet_2014_10_022 crossref_primary_10_3390_toxins15060394 crossref_primary_10_1016_j_envpol_2021_116818 crossref_primary_10_1039_D3FO04898E crossref_primary_10_1152_physrev_00041_2019 crossref_primary_10_1016_j_tjnut_2024_09_031 crossref_primary_10_1017_S0007114511004946 crossref_primary_10_1016_j_fct_2020_111241 crossref_primary_10_1016_j_ecoenv_2021_112221 crossref_primary_10_1155_2020_9834813 crossref_primary_10_1007_s00204_019_02425_6 crossref_primary_10_1016_j_scitotenv_2024_176937 crossref_primary_10_1096_fj_201902298R crossref_primary_10_1007_s00204_014_1309_4 crossref_primary_10_1016_j_toxicon_2011_11_010 crossref_primary_10_1186_s40813_022_00254_1 crossref_primary_10_1016_j_etp_2014_10_001 crossref_primary_10_1371_journal_pone_0023871 crossref_primary_10_1152_ajpgi_00279_2020 crossref_primary_10_3945_an_112_002188 crossref_primary_10_3920_WMJ2019_2462 crossref_primary_10_3390_toxins16070297 crossref_primary_10_1016_j_bcp_2012_02_007 crossref_primary_10_1021_acs_jafc_9b01037 crossref_primary_10_1016_j_fbio_2023_102859 crossref_primary_10_18632_oncotarget_17886 crossref_primary_10_1016_j_taap_2013_05_023 crossref_primary_10_1007_s00204_016_1794_8 crossref_primary_10_3390_toxins13020171 crossref_primary_10_1177_1753425920937778 crossref_primary_10_2478_aoas_2023_0087 crossref_primary_10_3389_fvets_2021_628258 crossref_primary_10_1002_jat_3083 crossref_primary_10_1039_C9FO02933H crossref_primary_10_3389_fimmu_2018_00186 crossref_primary_10_31665_JFB_2018_1130 crossref_primary_10_1016_j_toxlet_2015_09_019 crossref_primary_10_1093_toxsci_kfs239 crossref_primary_10_3390_ijms25189790 crossref_primary_10_3920_WMJ2019_2452 crossref_primary_10_1016_j_tiv_2012_09_020 crossref_primary_10_1007_s12550_017_0289_7 crossref_primary_10_3390_ijms19071923 crossref_primary_10_3390_metabo12070659 crossref_primary_10_1007_s00441_013_1676_9 crossref_primary_10_1096_fj_13_238717 crossref_primary_10_1016_j_fct_2022_112921 crossref_primary_10_1177_1753425920966686 crossref_primary_10_1093_jn_nxac200 crossref_primary_10_1007_s00204_014_1354_z crossref_primary_10_1093_jas_skae099 crossref_primary_10_1038_s41598_024_82928_0 crossref_primary_10_1186_s40104_017_0210_4 crossref_primary_10_2903_j_efsa_2017_4718 crossref_primary_10_1039_C9RA06222J crossref_primary_10_1007_s10616_011_9420_3 crossref_primary_10_1016_j_fct_2020_111962 crossref_primary_10_1016_j_jhazmat_2023_132013 crossref_primary_10_1016_j_fct_2016_06_012 crossref_primary_10_1371_journal_pone_0143640 crossref_primary_10_14814_phy2_12225 crossref_primary_10_1080_07060661_2022_2044910 crossref_primary_10_1002_jat_3989 crossref_primary_10_1155_2019_2682748 crossref_primary_10_1111_j_1462_5822_2012_01796_x crossref_primary_10_1016_j_ajpath_2013_09_001 crossref_primary_10_1016_j_jhazmat_2024_134601 crossref_primary_10_3390_toxins5122341 crossref_primary_10_3390_antiox11091775 crossref_primary_10_1016_j_toxlet_2019_03_010 crossref_primary_10_1016_j_cnd_2021_02_001 crossref_primary_10_3389_fimmu_2024_1398403 crossref_primary_10_1186_1746_6148_8_245 crossref_primary_10_1016_j_toxrep_2014_05_001 crossref_primary_10_3390_toxins10120541 crossref_primary_10_1016_j_envpol_2019_06_001 crossref_primary_10_3390_toxins10010013 crossref_primary_10_1021_acs_chemrestox_6b00001 crossref_primary_10_3390_ani13243752 crossref_primary_10_1038_s41385_022_00565_0 crossref_primary_10_1002_jcp_25736 crossref_primary_10_1186_s40104_021_00596_w crossref_primary_10_1016_j_fct_2021_112616 crossref_primary_10_3390_toxins7020593 crossref_primary_10_3390_nu9121343 crossref_primary_10_1016_j_toxlet_2020_07_032 crossref_primary_10_1016_j_toxicon_2013_01_024 crossref_primary_10_2527_jas_2012_6053 crossref_primary_10_1371_journal_pone_0179586 crossref_primary_10_3390_toxins15020085 crossref_primary_10_1021_acs_jafc_8b03662 crossref_primary_10_1016_j_tjnut_2023_09_026 crossref_primary_10_3390_antiox12081565 crossref_primary_10_3920_WMJ2020_2648 crossref_primary_10_3390_toxins14070497 crossref_primary_10_1016_j_jhazmat_2020_122087 crossref_primary_10_3945_jn_114_209486 crossref_primary_10_3390_toxins13050301 crossref_primary_10_3390_toxins8100270 crossref_primary_10_1186_s40104_023_00976_4 crossref_primary_10_1016_j_toxicon_2015_01_016 crossref_primary_10_1039_D0FO01579B crossref_primary_10_1111_apt_12665 crossref_primary_10_1007_s00204_021_03044_w crossref_primary_10_3389_fvets_2025_1493496 crossref_primary_10_3390_nu12072115 crossref_primary_10_1016_j_fct_2015_02_013 crossref_primary_10_1186_1297_9716_43_35 crossref_primary_10_1007_s12550_019_00342_2 crossref_primary_10_1371_journal_pone_0053647 crossref_primary_10_1016_j_toxlet_2017_08_080 crossref_primary_10_1080_10937404_2017_1326071 crossref_primary_10_1021_acsomega_1c00117 crossref_primary_10_1177_17534259211030563 crossref_primary_10_1007_s12550_016_0260_z crossref_primary_10_1093_jas_sky378 crossref_primary_10_1186_s13567_016_0309_1 crossref_primary_10_3168_jds_2012_6200 crossref_primary_10_3389_fmicb_2021_643639 crossref_primary_10_3390_toxins12100628 crossref_primary_10_1021_jf400213q crossref_primary_10_3390_ijms242015172 crossref_primary_10_3920_WMJ2014_1864 crossref_primary_10_3390_toxins5020396 crossref_primary_10_1016_j_bcp_2020_113898 crossref_primary_10_1016_j_tiv_2016_10_003 crossref_primary_10_3390_toxins12030146 crossref_primary_10_4315_JFP_22_077 crossref_primary_10_3390_toxins13110758 crossref_primary_10_2478_aoas_2019_0013 crossref_primary_10_1007_s12550_014_0212_4 crossref_primary_10_3390_toxins14040275 crossref_primary_10_1080_10408398_2023_2271101 crossref_primary_10_3390_toxins12100610 crossref_primary_10_1016_j_toxlet_2012_12_003 crossref_primary_10_1016_j_fct_2013_07_017 crossref_primary_10_1016_j_anifeedsci_2016_07_019 crossref_primary_10_3390_toxins11110665 |
Cites_doi | 10.1016/j.taap.2008.04.004 10.1002/iub.175 10.1289/ehp.10663 10.1074/jbc.274.20.13985 10.1016/S0140-6736(89)91684-X 10.1073/pnas.0805761105 10.1016/j.toxlet.2005.12.006 10.1146/annurev.physiol.60.1.143 10.1128/IAI.01698-07 10.1016/j.tox.2007.10.002 10.1016/j.tiv.2009.07.015 10.1007/s00441-008-0689-2 10.1016/j.yexcr.2008.08.012 10.1093/toxsci/kfi146 10.1242/jcs.02915 10.1091/mbc.11.3.849 10.1186/1472-6793-6-2 10.1074/jbc.M211710200 10.1016/j.vetimm.2005.08.010 10.1093/nar/gng073 10.1093/toxsci/69.2.373 10.1016/j.bbrc.2007.07.168 10.1016/j.imbio.2007.05.002 10.1016/j.fct.2007.12.006 10.1017/S0007114509990213 10.1016/j.jaci.2009.05.038 10.1023/A:1006923808748 10.1093/jn/132.9.2723 10.1152/ajpcell.00007.2004 10.1074/jbc.M408122200 10.1093/toxsci/kfh006 10.1128/aem.57.3.672-677.1991 10.1042/BJ20050959 10.1074/jbc.M503786200 10.1016/j.taap.2010.03.012 10.1016/S0079-6107(98)00056-X 10.1016/j.taap.2009.03.003 10.1152/ajpgi.2001.280.1.G7 10.1093/toxsci/kfg006 10.1016/j.toxlet.2008.01.015 10.1016/j.tox.2009.06.014 10.1093/jaoac/78.3.631 10.1136/gut.2003.036632 10.1080/10937400590889458 10.1016/j.bbrc.2009.04.120 10.1152/ajpcell.00157.2008 10.1051/vetres:2006006 10.1016/j.molimm.2004.04.010 10.1016/j.fct.2006.05.018 10.1136/gut.2005.085373 10.1016/j.toxlet.2004.04.045 10.1016/0003-2697(73)90217-0 10.1007/s00418-008-0424-9 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 1XC |
DOI | 10.3945/jn.110.123919 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1541-6100 |
EndPage | 1962 |
ExternalDocumentID | oai_HAL_hal_02935487v1 20861219 23411465 10_3945_jn_110_123919 US201301901782 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET -~X .55 .GJ 0R~ 18M 29L 2WC 34G 39C 3O- 4.4 48X 53G 5GY 5RE 5VS 85S A8Z AABJS AABMN AABZA AACZT AAJQQ AAPGJ AAPQZ AAUQX AAVAP AAWDT AAWTL AAXUO AAYJJ ABBTP ABJNI ABPTD ABPTK ABSAR ABSGY ABWST ACFRR ACGFO ACGOD ACIHN ACIMA ACKIV ACNCT ACUFI ACUTJ ADBBV ADEIU ADGZP ADRTK ADVEK AEAQA AENEX AEQTP AETBJ AETEA AFDAS AFFNX AFFZL AFMIJ AFOFC AFRAH AFXAL AGINJ AGQXC AGUTN AHMBA AIKOY AIMBJ AJEEA ALEEW ALMA_UNASSIGNED_HOLDINGS ALXQX AMRAJ AQDSO AQKUS ASMCH AZQFJ BAWUL BAYMD BCR BCRHZ BES BEYMZ BKOMP BLC BTRTY BYORX C1A CASEJ CDBKE DAKXR DIK DPPUQ DU5 E3Z EBS EIHJH EJD ENERS EX3 F5P F9R FBQ FDB FECEO FLUFQ FOEOM FOTVD FQBLK FRP G8K GAUVT GJXCC GX1 HF~ HZ~ IH2 K-O KBUDW KOP KQ8 KSI KSN L7B MBLQV MHKGH MV1 MVM NHB NHCRO NOMLY NOYVH NVLIB O9- OAUYM OBFPC ODMLO OHT OJZSN OK1 OPAEJ OVD P-O P2P PEA PQQKQ PRG R0Z RHF RHI ROL ROX SV3 TAE TEORI TMA TN5 TNT TR2 TWZ UCJ UHB UKR UPT W2D W8F WH7 WHG WOQ WOW X7M XFK XOL XSW Y6R YBU YHG YKV YQJ YQT YSK ZGI ZHY ZXP ~KM AAGQS AALRI AAYWO AAYXX ABDPE ACVFH ADCNI ADMTO ADUKH ADVLN AEUPX AFJKZ AFPUW AGCQF AGKRT AIGII AITUG AKBMS AKRWK AKYEP APXCP CITATION H13 NU- YR5 EFKBS IQODW CGR CUY CVF ECM EIF NPM UIG VXZ Z5M 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c393t-2fac8c8d419bee690a55e43e8e22f2a0689a54fceb617af0e9ed82ecc33cfa963 |
ISSN | 0022-3166 1541-6100 |
IngestDate | Fri Sep 12 12:39:14 EDT 2025 Thu Sep 04 16:44:19 EDT 2025 Sun Sep 28 06:49:06 EDT 2025 Wed Feb 19 02:25:04 EST 2025 Mon Jul 21 09:14:14 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 Tue Jul 01 03:04:48 EDT 2025 Wed Dec 27 19:16:21 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Nutrition Digestive system Enzyme Barrier function Transferases Gut Mitogen-activated protein kinase Gene expression Mechanism Pig Vertebrata Mammalia Decrease Animal Artiodactyla Ungulata |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c393t-2fac8c8d419bee690a55e43e8e22f2a0689a54fceb617af0e9ed82ecc33cfa963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9918-277X 0000-0003-2638-2548 0000-0002-6802-1890 |
PMID | 20861219 |
PQID | 759876819 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | hal_primary_oai_HAL_hal_02935487v1 proquest_miscellaneous_851592014 proquest_miscellaneous_759876819 pubmed_primary_20861219 pascalfrancis_primary_23411465 crossref_primary_10_3945_jn_110_123919 crossref_citationtrail_10_3945_jn_110_123919 fao_agris_US201301901782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-11-00 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-00 |
PublicationDecade | 2010 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States |
PublicationTitle | The Journal of nutrition |
PublicationTitleAlternate | J Nutr |
PublicationYear | 2010 |
Publisher | American Society for Nutrition |
Publisher_xml | – name: American Society for Nutrition |
References | Pestka (10.3945/jn.110.123919_bib5) 2005; 8 Patrick (10.3945/jn.110.123919_bib57) 2006; 6 Zeissig (10.3945/jn.110.123919_bib40) 2004; 53 Lanaspa (10.3945/jn.110.123919_bib45) 2008; 105 Oswald (10.3945/jn.110.123919_bib15) 2006; 37 Gonzalez-Vallina (10.3945/jn.110.123919_bib22) 1996; 271 Schaffner (10.3945/jn.110.123919_bib26) 1973; 56 Zhou (10.3945/jn.110.123919_bib34) 2003; 72 Pinton (10.3945/jn.110.123919_bib21) 2009; 237 Sergent (10.3945/jn.110.123919_bib59) 2008; 46 Oswald (10.3945/jn.110.123919_bib1) 1998; 149 Moon (10.3945/jn.110.123919_bib8) 2002; 69 Lowell (10.3945/jn.110.123919_bib48) 2004; 41 Zhou (10.3945/jn.110.123919_bib9) 2005; 85 Trucksess (10.3945/jn.110.123919_bib32) 1995; 78 Moon (10.3945/jn.110.123919_bib37) 2007; 362 Kasuga (10.3945/jn.110.123919_bib19) 1998; 142 Schothorst (10.3945/jn.110.123919_bib3) 2004; 153 Oshima (10.3945/jn.110.123919_bib12) 2008; 295 De Walle (10.3945/jn.110.123919_bib52) 2010; 245 Meissonnier (10.3945/jn.110.123919_bib23) 2008; 231 Bhat (10.3945/jn.110.123919_bib30) 1989; 1 Abouzied (10.3945/jn.110.123919_bib33) 1991; 57 Bouhet (10.3945/jn.110.123919_bib58) 2006; 44 Maresca (10.3945/jn.110.123919_bib16) 2002; 132 Turner (10.3945/jn.110.123919_bib4) 2008; 116 Lipschutz (10.3945/jn.110.123919_bib27) 2005; 280 Kolf-Clauw (10.3945/jn.110.123919_bib18) 2009; 23 Findley (10.3945/jn.110.123919_bib53) 2009; 61 Madara (10.3945/jn.110.123919_bib39) 1998; 60 Bimczok (10.3945/jn.110.123919_bib36) 2007; 212 Pinton (10.3945/jn.110.123919_bib7) 2008; 177 Bouhet (10.3945/jn.110.123919_bib13) 2005; 108 Chen (10.3945/jn.110.123919_bib47) 2000; 11 Yang (10.3945/jn.110.123919_bib38) 2008; 243 Lamb-Rosteski (10.3945/jn.110.123919_bib42) 2008; 76 Michikawa (10.3945/jn.110.123919_bib44) 2008; 334 Ikari (10.3945/jn.110.123919_bib51) 2009; 384 Basuroy (10.3945/jn.110.123919_bib50) 2006; 393 Soderholm (10.3945/jn.110.123919_bib14) 2001; 280 Peirson (10.3945/jn.110.123919_bib24) 2003; 31 Wache (10.3945/jn.110.123919_bib6) 2009; 262 Aono (10.3945/jn.110.123919_bib55) 2008; 314 10.3945/jn.110.123919_bib31 Shen (10.3945/jn.110.123919_bib56) 2006; 119 Bouhet (10.3945/jn.110.123919_bib17) 2004; 77 (10.3945/jn.110.123919_bib2) 2003 Le Gall (10.3945/jn.110.123919_bib25) 2009; 102 Shifrin (10.3945/jn.110.123919_bib35) 1999; 274 Cobb (10.3945/jn.110.123919_bib11) 1999; 71 Sergent (10.3945/jn.110.123919_bib20) 2006; 164 Arrieta (10.3945/jn.110.123919_bib28) 2006; 55 Pestka (10.3945/jn.110.123919_bib10) 2008 Groschwitz (10.3945/jn.110.123919_bib29) 2009; 124 Forster (10.3945/jn.110.123919_bib41) 2008; 130 McLaughlin (10.3945/jn.110.123919_bib43) 2004; 287 Basuroy (10.3945/jn.110.123919_bib46) 2003; 278 Anderson (10.3945/jn.110.123919_bib49) 1995; 269 Tanaka (10.3945/jn.110.123919_bib54) 2005; 280 |
References_xml | – volume: 231 start-page: 142 year: 2008 ident: 10.3945/jn.110.123919_bib23 article-title: Immunotoxicity of aflatoxin B1: impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression publication-title: Toxicol Appl Pharmacol. doi: 10.1016/j.taap.2008.04.004 – volume: 61 start-page: 431 year: 2009 ident: 10.3945/jn.110.123919_bib53 article-title: Regulation and roles for claudin-family tight junction proteins publication-title: IUBMB Life. doi: 10.1002/iub.175 – volume: 116 start-page: 21 year: 2008 ident: 10.3945/jn.110.123919_bib4 article-title: Urinary deoxynivalenol is correlated with cereal intake in individuals from the United Kingdom publication-title: Environ Health Perspect. doi: 10.1289/ehp.10663 – volume: 274 start-page: 13985 year: 1999 ident: 10.3945/jn.110.123919_bib35 article-title: Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis publication-title: J Biol Chem. doi: 10.1074/jbc.274.20.13985 – volume: 1 start-page: 35 year: 1989 ident: 10.3945/jn.110.123919_bib30 article-title: Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat production in Kashmir Valley, India publication-title: Lancet. doi: 10.1016/S0140-6736(89)91684-X – volume: 105 start-page: 15797 year: 2008 ident: 10.3945/jn.110.123919_bib45 article-title: Hypertonic stress increases claudin-4 expression and tight junction integrity in association with MUPP1 in IMCD3 cells publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0805761105 – volume: 164 start-page: 167 year: 2006 ident: 10.3945/jn.110.123919_bib20 article-title: Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations publication-title: Toxicol Lett. doi: 10.1016/j.toxlet.2005.12.006 – volume: 60 start-page: 143 year: 1998 ident: 10.3945/jn.110.123919_bib39 article-title: Regulation of the movement of solutes across tight junctions publication-title: Annu Rev Physiol. doi: 10.1146/annurev.physiol.60.1.143 – volume: 76 start-page: 3390 year: 2008 ident: 10.3945/jn.110.123919_bib42 article-title: Epidermal growth factor inhibits Campylobacter jejuni-induced claudin-4 disruption, loss of epithelial barrier function, and Escherichia coli translocation publication-title: Infect Immun. doi: 10.1128/IAI.01698-07 – volume: 243 start-page: 145 year: 2008 ident: 10.3945/jn.110.123919_bib38 article-title: Ribotoxic mycotoxin deoxynivalenol induces G(2)/M cell cycle arrest via p21(Cip/WAF1) mRNA stabilization in human epithelial cells publication-title: Toxicology. doi: 10.1016/j.tox.2007.10.002 – volume: 23 start-page: 1580 year: 2009 ident: 10.3945/jn.110.123919_bib18 article-title: Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis publication-title: Toxicol In Vitro. doi: 10.1016/j.tiv.2009.07.015 – volume: 334 start-page: 255 year: 2008 ident: 10.3945/jn.110.123919_bib44 article-title: Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells publication-title: Cell Tissue Res. doi: 10.1007/s00441-008-0689-2 – volume: 314 start-page: 3326 year: 2008 ident: 10.3945/jn.110.123919_bib55 article-title: Phosphorylation of claudin-4 is required for tight junction formation in a human keratinocyte cell line publication-title: Exp Cell Res. doi: 10.1016/j.yexcr.2008.08.012 – volume: 85 start-page: 916 year: 2005 ident: 10.3945/jn.110.123919_bib9 article-title: Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck publication-title: Toxicol Sci. doi: 10.1093/toxsci/kfi146 – volume: 119 start-page: 2095 year: 2006 ident: 10.3945/jn.110.123919_bib56 article-title: Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure publication-title: J Cell Sci. doi: 10.1242/jcs.02915 – volume: 269 start-page: G467 year: 1995 ident: 10.3945/jn.110.123919_bib49 article-title: Tight junctions and the molecular basis for regulation of paracellular permeability publication-title: Am J Physiol. – volume: 11 start-page: 849 year: 2000 ident: 10.3945/jn.110.123919_bib47 article-title: Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells publication-title: Mol Biol Cell. doi: 10.1091/mbc.11.3.849 – volume: 6 start-page: 2 year: 2006 ident: 10.3945/jn.110.123919_bib57 article-title: Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma modulate epithelial barrier function in Madin-Darby canine kidney cells through mitogen activated protein kinase signaling publication-title: BMC Physiol. doi: 10.1186/1472-6793-6-2 – volume: 278 start-page: 11916 year: 2003 ident: 10.3945/jn.110.123919_bib46 article-title: Expression of kinase-inactive c-Src delays oxidative stress-induced disassembly and accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer publication-title: J Biol Chem. doi: 10.1074/jbc.M211710200 – volume: 108 start-page: 199 year: 2005 ident: 10.3945/jn.110.123919_bib13 article-title: The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response publication-title: Vet Immunol Immunopathol. doi: 10.1016/j.vetimm.2005.08.010 – volume: 31 start-page: e73 year: 2003 ident: 10.3945/jn.110.123919_bib24 article-title: Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gng073 – volume: 69 start-page: 373 year: 2002 ident: 10.3945/jn.110.123919_bib8 article-title: Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases publication-title: Toxicol Sci. doi: 10.1093/toxsci/69.2.373 – volume: 362 start-page: 256 year: 2007 ident: 10.3945/jn.110.123919_bib37 article-title: Modulation of early growth response gene 1 and interleukin-8 expression by ribotoxin deoxynivalenol (vomitoxin) via ERK1/2 in human epithelial intestine 407 cells publication-title: Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2007.07.168 – volume: 212 start-page: 655 year: 2007 ident: 10.3945/jn.110.123919_bib36 article-title: The Fusarium toxin deoxynivalenol disrupts phenotype and function of monocyte-derived dendritic cells in vivo and in vitro publication-title: Immunobiology. doi: 10.1016/j.imbio.2007.05.002 – start-page: 136 year: 2003 ident: 10.3945/jn.110.123919_bib2 – volume: 46 start-page: 813 year: 2008 ident: 10.3945/jn.110.123919_bib59 article-title: Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level publication-title: Food Chem Toxicol. doi: 10.1016/j.fct.2007.12.006 – volume: 102 start-page: 1285 year: 2009 ident: 10.3945/jn.110.123919_bib25 article-title: Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets publication-title: Br J Nutr. doi: 10.1017/S0007114509990213 – volume: 124 start-page: 3 year: 2009 ident: 10.3945/jn.110.123919_bib29 article-title: Intestinal barrier function: molecular regulation and disease pathogenesis publication-title: J Allergy Clin Immunol. doi: 10.1016/j.jaci.2009.05.038 – volume: 149 start-page: 585 year: 1998 ident: 10.3945/jn.110.123919_bib1 article-title: Immunotoxicity of mycotoxins publication-title: Rev Med Vet. – volume: 142 start-page: 161 year: 1998 ident: 10.3945/jn.110.123919_bib19 article-title: In vitro effect of deoxynivalenol on the differentiation of human colonic cell lines Caco-2 and T84 publication-title: Mycopathologia. doi: 10.1023/A:1006923808748 – volume: 132 start-page: 2723 year: 2002 ident: 10.3945/jn.110.123919_bib16 article-title: The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells publication-title: J Nutr. doi: 10.1093/jn/132.9.2723 – volume: 287 start-page: C1412 year: 2004 ident: 10.3945/jn.110.123919_bib43 article-title: Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms publication-title: Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00007.2004 – volume: 280 start-page: 3780 year: 2005 ident: 10.3945/jn.110.123919_bib27 article-title: Extracellular signal-regulated kinases 1/2 control claudin-2 expression in Madin-Darby canine kidney strain I and II cells publication-title: J Biol Chem. doi: 10.1074/jbc.M408122200 – volume: 77 start-page: 165 year: 2004 ident: 10.3945/jn.110.123919_bib17 article-title: The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells publication-title: Toxicol Sci. doi: 10.1093/toxsci/kfh006 – volume: 57 start-page: 672 year: 1991 ident: 10.3945/jn.110.123919_bib33 article-title: Immunochemical assessment of mycotoxins in 1989 grain foods: evidence for deoxynivalenol (vomitoxin) contamination publication-title: Appl Environ Microbiol. doi: 10.1128/aem.57.3.672-677.1991 – volume: 393 start-page: 69 year: 2006 ident: 10.3945/jn.110.123919_bib50 article-title: MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide publication-title: Biochem J. doi: 10.1042/BJ20050959 – ident: 10.3945/jn.110.123919_bib31 – volume: 280 start-page: 42375 year: 2005 ident: 10.3945/jn.110.123919_bib54 article-title: EphA2 phosphorylates the cytoplasmic tail of claudin-4 and mediates paracellular permeability publication-title: J Biol Chem. doi: 10.1074/jbc.M503786200 – volume: 245 start-page: 291 year: 2010 ident: 10.3945/jn.110.123919_bib52 article-title: Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis publication-title: Toxicol Appl Pharmacol. doi: 10.1016/j.taap.2010.03.012 – volume: 71 start-page: 479 year: 1999 ident: 10.3945/jn.110.123919_bib11 article-title: MAP kinase pathways publication-title: Prog Biophys Mol Biol. doi: 10.1016/S0079-6107(98)00056-X – volume: 237 start-page: 41 year: 2009 ident: 10.3945/jn.110.123919_bib21 article-title: The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression publication-title: Toxicol Appl Pharmacol. doi: 10.1016/j.taap.2009.03.003 – volume: 280 start-page: G7 year: 2001 ident: 10.3945/jn.110.123919_bib14 article-title: Stress and gastrointestinal tract. II. Stress and intestinal barrier function publication-title: Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.2001.280.1.G7 – volume: 271 start-page: G249 year: 1996 ident: 10.3945/jn.110.123919_bib22 article-title: Lipoprotein and apolipoprotein secretion by a newborn piglet intestinal cell line (IPEC-1) publication-title: Am J Physiol. – volume: 72 start-page: 130 year: 2003 ident: 10.3945/jn.110.123919_bib34 article-title: Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin publication-title: Toxicol Sci. doi: 10.1093/toxsci/kfg006 – volume: 177 start-page: 215 year: 2008 ident: 10.3945/jn.110.123919_bib7 article-title: Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses publication-title: Toxicol Lett. doi: 10.1016/j.toxlet.2008.01.015 – volume: 262 start-page: 239 year: 2009 ident: 10.3945/jn.110.123919_bib6 article-title: The mycotoxin deoxynivalenol inhibits the cell surface expression of activation markers in human macrophages publication-title: Toxicology. doi: 10.1016/j.tox.2009.06.014 – volume: 78 start-page: 631 year: 1995 ident: 10.3945/jn.110.123919_bib32 article-title: Survey of deoxynivalenol in U.S. 1993 wheat and barley crops by enzyme-linked immunosorbent assay publication-title: J AOAC Int. doi: 10.1093/jaoac/78.3.631 – volume: 53 start-page: 1295 year: 2004 ident: 10.3945/jn.110.123919_bib40 article-title: Downregulation of epithelial apoptosis and barrier repair in active Crohn’s disease by tumour necrosis factor alpha antibody treatment publication-title: Gut. doi: 10.1136/gut.2003.036632 – start-page: 241 year: 2008 ident: 10.3945/jn.110.123919_bib10 article-title: Mechanisms of deoxynivalenol-induced gene expression and apoptosis publication-title: Food Addit Contam. – volume: 8 start-page: 39 year: 2005 ident: 10.3945/jn.110.123919_bib5 article-title: Deoxynivalenol: toxicology and potential effects on humans publication-title: J Toxicol Environ Health B Crit Rev. doi: 10.1080/10937400590889458 – volume: 384 start-page: 306 year: 2009 ident: 10.3945/jn.110.123919_bib51 article-title: Epidermal growth factor increases claudin-4 expression mediated by Sp1 elevation in MDCK cells publication-title: Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2009.04.120 – volume: 295 start-page: C800 year: 2008 ident: 10.3945/jn.110.123919_bib12 article-title: Aspirin induces gastric epithelial barrier dysfunction by activating p38 MAPK via claudin-7 publication-title: Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00157.2008 – volume: 37 start-page: 359 year: 2006 ident: 10.3945/jn.110.123919_bib15 article-title: Role of intestinal epithelial cells in the innate immune defence of the pig intestine publication-title: Vet Res. doi: 10.1051/vetres:2006006 – volume: 41 start-page: 631 year: 2004 ident: 10.3945/jn.110.123919_bib48 article-title: Src-family kinases: rheostats of immune cell signaling publication-title: Mol Immunol. doi: 10.1016/j.molimm.2004.04.010 – volume: 44 start-page: 1768 year: 2006 ident: 10.3945/jn.110.123919_bib58 article-title: Mycotoxin fumonisin B1 selectively down-regulates the basal IL-8 expression in pig intestine: in vivo and in vitro studies publication-title: Food Chem Toxicol. doi: 10.1016/j.fct.2006.05.018 – volume: 55 start-page: 1512 year: 2006 ident: 10.3945/jn.110.123919_bib28 article-title: Alterations in intestinal permeability publication-title: Gut. doi: 10.1136/gut.2005.085373 – volume: 153 start-page: 133 year: 2004 ident: 10.3945/jn.110.123919_bib3 article-title: Report from SCOOP task 3.2.10 "collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states". Subtask: trichothecenes publication-title: Toxicol Lett. doi: 10.1016/j.toxlet.2004.04.045 – volume: 56 start-page: 502 year: 1973 ident: 10.3945/jn.110.123919_bib26 article-title: A rapid, sensitive and specific method for the determination of protein in dilute solution publication-title: Anal Biochem. doi: 10.1016/0003-2697(73)90217-0 – volume: 130 start-page: 55 year: 2008 ident: 10.3945/jn.110.123919_bib41 article-title: Tight junctions and the modulation of barrier function in disease publication-title: Histochem Cell Biol. doi: 10.1007/s00418-008-0424-9 |
SSID | ssj0001498 |
Score | 2.4534404 |
Snippet | Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against... |
SourceID | hal proquest pubmed pascalfrancis crossref fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1956 |
SubjectTerms | animal models animal proteins Animals biochemical pathways Biological and medical sciences Cell Line cell lines Cell Membrane Permeability - drug effects Claudin-4 deoxynivalenol Down-Regulation - drug effects Electric Impedance Enterocytes - drug effects Enterocytes - metabolism enzyme activation Enzyme Activation - drug effects enzyme inhibition enzyme inhibitors Enzyme Inhibitors - pharmacology epithelial cells Extracellular Signal-Regulated MAP Kinases - antagonists & inhibitors Extracellular Signal-Regulated MAP Kinases - physiology Feeding. Feeding behavior Foodborne Diseases - physiopathology Fundamental and applied biological sciences. Psychology human nutrition intestinal mucosa Intestinal Mucosa - drug effects Intestinal Mucosa - metabolism Intestinal Mucosa - pathology Life Sciences Membrane Proteins - genetics Membrane Proteins - physiology mitogen-activated protein kinase Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 - antagonists & inhibitors Mitogen-Activated Protein Kinase 3 - metabolism permeability phosphorylation Phosphorylation - drug effects Poisons - pharmacology protein synthesis RNA, Messenger - metabolism Signal Transduction - drug effects Swine Tight Junctions - drug effects Tight Junctions - metabolism Toxicology Toxicology and food chain Trichothecenes - pharmacology Vertebrates: anatomy and physiology, studies on body, several organs or systems |
Title | Deoxynivalenol Impairs Porcine Intestinal Barrier Function and Decreases the Protein Expression of Claudin-4 through a Mitogen-Activated Protein Kinase-Dependent Mechanism |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20861219 https://www.proquest.com/docview/759876819 https://www.proquest.com/docview/851592014 https://hal.inrae.fr/hal-02935487 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUJIe4Ll8lCaC8lIxcnjR8HA1Xb6AOsYm-R4zjQ0iZVm06Mv8Qf4WdxTuK4zVgl4CWqEjuxej4ff8c-F0JecsX8hIfS5mmf2ayfcjvKJLNDjyV9HvlZyjDe-cMwHIzYyUVw0en82vBaWpXJofxxY1zJ_0gV7oFcMUr2HyRrXgo34DfIF64gYbj-lYyPVfH9Kh_DK1VeTKuIx_Fi2QNKjcflVSoImMHINxOxqErT4TJWNh7IaUUZl5jkoYqXKrDyJeb8r31jKyIpp2IFy5vNTEUf0ZuBFoAx2RgTcSmQsjZ9v8HHlspuKuuWvZnCyOImTeFkDc0NIpw3BQGMmh7n2qm_3u6Zb578j-Wq2twtFrmajs2iMoSxiauFqrMInyiR29c7nwncnir1oUHlIfBmqv9Qve-BPiRm30NpXc1csHwdp6XM6-RPDWrdDd2MkZE3LRo-Z5hfY5JjSMQhrOS8VuIbAJrPKgR5YP-5jYpvZ-luHu2QXa8PLK5Ldo9OP34-NawALNGozvGK33vd-hpmpNb9W_RoJxMFXL-ii-7tuVjCrM3qcivb7aGKF53fJXe0HOlRjc57pKPy-8Q6HquSHlCddXZKh42MH5CfbdRSjVqqUUvXqKUatbRBLQXUUoNaCqilGnl0jVpaZNSglmrUUkH_QK3pex211KD2IRm9f3f-dmDrkiG29Llf2l4mZCSjlLk8USrkjggC0EYqUp6XecIJIy4ClkmVAHMXmaO4SiMP1Jjvy0zAYvSIdPMiV3uEstRXeEQpZMjBqveiBGyflEvfDR0huLDIq0ZSsdT59LGsyzQGuxplHE9ysK_Bxq5kbJED03xeJ5LZ1nAPxB6LL7DIx6NPHroWIGsHKm-RF4AF0x0zww-OzmK85wBtx82HS9ci-y2omOYeEFbgRYFFaIOdGNYSPCAUuSpWy7gfcCBHEY5hW5MI7R8YE7PI4xp26_drCD_Z-uQpubWeyc9It1ys1HPg9GWyr6fLbyyaABI |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deoxynivalenol+impairs+porcine+intestinal+barrier+function+and+decreases+the+protein+expression+of+claudin-4+through+a+mitogen-activated+protein+kinase-dependent+mechanism&rft.jtitle=The+Journal+of+nutrition&rft.au=Pinton%2C+Philippe&rft.au=Braicu%2C+Cornelia&rft.au=Nougayrede%2C+Jean-Philippe&rft.au=Laffitte%2C+Jo%C3%ABlle&rft.date=2010-11-01&rft.eissn=1541-6100&rft.volume=140&rft.issue=11&rft.spage=1956&rft_id=info:doi/10.3945%2Fjn.110.123919&rft_id=info%3Apmid%2F20861219&rft.externalDocID=20861219 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3166&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3166&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3166&client=summon |