Deoxynivalenol Impairs Porcine Intestinal Barrier Function and Decreases the Protein Expression of Claudin-4 through a Mitogen-Activated Protein Kinase-Dependent Mechanism

Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 prot...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of nutrition Vol. 140; no. 11; pp. 1956 - 1962
Main Authors Pinton, Philippe, Braicu, Cornelia, Nougayrede, Jean-Philippe, Laffitte, Joëlle, Taranu, Ionelia, Oswald, Isabelle P
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Nutrition 01.11.2010
Subjects
Gut
Pig
Online AccessGet full text
ISSN0022-3166
1541-6100
1541-6100
DOI10.3945/jn.110.123919

Cover

Abstract Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 protein, a tight junction protein. The mechanism by which DON alters the intestinal barrier function remains poorly characterized. Therefore, we investigated the involvement of mitogen-activated protein kinases (MAPK) in the DON-induced loss of barrier function. We first verified that 30 μmol/L of DON activated MAPK in a highly sensitive porcine intestinal epithelial cell line (IPEC-1). Inhibition of p44/42 extracellular signal-regulated kinase (ERK) phosphorylation, with 0.5 μmol/L of the specific MAPK pharmacological inhibitor U0126 for 2 h, restored the barrier function of the differentiated intestinal epithelial cell monolayers. The restoration of barrier function was evaluated by trans-epithelial electrical resistance measurements and tracer flux paracellular permeability experiments. The U0126 also restored the intestinal expression of claudin-4 protein, thereby demonstrating that MAPK activation is involved in claudin-4 protein expression and claudin-4 is involved in the maintenance of the intestinal epithelial cell barrier function. Further experiments indicated that p44/42 ERK is not involved in the transcriptional regulation of claudin-4. In conclusion, we demonstrated that DON-induced activation of the p44/42 ERK signaling pathway inhibits the expression of claudin-4 protein, which leads to impaired intestinal barrier function. Given the high levels of DON in cereal grains, these observations of impaired barrier function have implications for human and animal health.
AbstractList Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 protein, a tight junction protein. The mechanism by which DON alters the intestinal barrier function remains poorly characterized. Therefore, we investigated the involvement of mitogen-activated protein kinases (MAPK) in the DON-induced loss of barrier function. We first verified that 30 μmol/L of DON activated MAPK in a highly sensitive porcine intestinal epithelial cell line (IPEC-1). Inhibition of p44/42 extracellular signal-regulated kinase (ERK) phosphorylation, with 0.5 μmol/L of the specific MAPK pharmacological inhibitor U0126 for 2 h, restored the barrier function of the differentiated intestinal epithelial cell monolayers. The restoration of barrier function was evaluated by trans-epithelial electrical resistance measurements and tracer flux paracellular permeability experiments. The U0126 also restored the intestinal expression of claudin-4 protein, thereby demonstrating that MAPK activation is involved in claudin-4 protein expression and claudin-4 is involved in the maintenance of the intestinal epithelial cell barrier function. Further experiments indicated that p44/42 ERK is not involved in the transcriptional regulation of claudin-4. In conclusion, we demonstrated that DON-induced activation of the p44/42 ERK signaling pathway inhibits the expression of claudin-4 protein, which leads to impaired intestinal barrier function. Given the high levels of DON in cereal grains, these observations of impaired barrier function have implications for human and animal health.Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 protein, a tight junction protein. The mechanism by which DON alters the intestinal barrier function remains poorly characterized. Therefore, we investigated the involvement of mitogen-activated protein kinases (MAPK) in the DON-induced loss of barrier function. We first verified that 30 μmol/L of DON activated MAPK in a highly sensitive porcine intestinal epithelial cell line (IPEC-1). Inhibition of p44/42 extracellular signal-regulated kinase (ERK) phosphorylation, with 0.5 μmol/L of the specific MAPK pharmacological inhibitor U0126 for 2 h, restored the barrier function of the differentiated intestinal epithelial cell monolayers. The restoration of barrier function was evaluated by trans-epithelial electrical resistance measurements and tracer flux paracellular permeability experiments. The U0126 also restored the intestinal expression of claudin-4 protein, thereby demonstrating that MAPK activation is involved in claudin-4 protein expression and claudin-4 is involved in the maintenance of the intestinal epithelial cell barrier function. Further experiments indicated that p44/42 ERK is not involved in the transcriptional regulation of claudin-4. In conclusion, we demonstrated that DON-induced activation of the p44/42 ERK signaling pathway inhibits the expression of claudin-4 protein, which leads to impaired intestinal barrier function. Given the high levels of DON in cereal grains, these observations of impaired barrier function have implications for human and animal health.
Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 protein, a tight junction protein. The mechanism by which DON alters the intestinal barrier function remains poorly characterized. Therefore, we investigated the involvement of mitogen-activated protein kinases (MAPK) in the DON-induced loss of barrier function. We first verified that 30 μmol/L of DON activated MAPK in a highly sensitive porcine intestinal epithelial cell line (IPEC-1). Inhibition of p44/42 extracellular signal-regulated kinase (ERK) phosphorylation, with 0.5 μmol/L of the specific MAPK pharmacological inhibitor U0126 for 2 h, restored the barrier function of the differentiated intestinal epithelial cell monolayers. The restoration of barrier function was evaluated by trans-epithelial electrical resistance measurements and tracer flux paracellular permeability experiments. The U0126 also restored the intestinal expression of claudin-4 protein, thereby demonstrating that MAPK activation is involved in claudin-4 protein expression and claudin-4 is involved in the maintenance of the intestinal epithelial cell barrier function. Further experiments indicated that p44/42 ERK is not involved in the transcriptional regulation of claudin-4. In conclusion, we demonstrated that DON-induced activation of the p44/42 ERK signaling pathway inhibits the expression of claudin-4 protein, which leads to impaired intestinal barrier function. Given the high levels of DON in cereal grains, these observations of impaired barrier function have implications for human and animal health.
Author Oswald, Isabelle P
Braicu, Cornelia
Taranu, Ionelia
Nougayrede, Jean-Philippe
Pinton, Philippe
Laffitte, Joëlle
Author_xml – sequence: 1
  fullname: Pinton, Philippe
– sequence: 2
  fullname: Braicu, Cornelia
– sequence: 3
  fullname: Nougayrede, Jean-Philippe
– sequence: 4
  fullname: Laffitte, Joëlle
– sequence: 5
  fullname: Taranu, Ionelia
– sequence: 6
  fullname: Oswald, Isabelle P
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23411465$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20861219$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02935487$$DView record in HAL
BookMark eNqF0s1uEzEQAOAVKqJp4cgVfEGIwxb_7G7sY0haGpGKStDzauKdTRxt7GB7o_aZeEkcbQgSEuJky_rGHs_MRXZmncUse83olVBF-XFjr1jaMy4UU8-yESsLlleM0rNsRCnnuWBVdZ5dhLChlLJCyRfZOaeyYpypUfZzhu7xyZo9dGhdR-bbHRgfyL3z2lgkcxsxRGOhI5_Ae4Oe3PRWR-MsAduQGWqPEDCQuEZy711EY8n1485jCAfkWjLtoG-MzYtkvOtXawLkzkS3QptP0lV7iNicYr-kxwLmM9yhbdBGcod6DdaE7cvseQtdwFfH9TJ7uLn-Pr3NF18_z6eTRa6FEjHnLWipZVMwtUSsFIWyxEKgRM5bDrSSCsqi1bis2BhaigobyVFrIXQLqhKX2Yfh3jV09c6bLfin2oGpbyeL-nBGuRJlIcd7luz7we68-9GnUtVbEzR2HVh0fahlyUrFU93_K8elkuNKMpXkm6Psl1tsTin87loC744Agoau9WC1CX-cKBgrqjK5fHDauxA8tifCaH2Ynnpj6zQ99TA9yYu_vDYRDr2OHkz3z6i3Q1QLroaVT5k8fEtfFpQpysaSi18BbdM-
CODEN JONUAI
CitedBy_id crossref_primary_10_1155_2020_5974157
crossref_primary_10_1152_ajpgi_00092_2018
crossref_primary_10_1016_j_fct_2018_09_050
crossref_primary_10_1007_s42994_023_00096_7
crossref_primary_10_1080_1745039X_2013_776327
crossref_primary_10_1093_jas_skaa206
crossref_primary_10_1016_j_fct_2018_01_013
crossref_primary_10_1016_j_jia_2024_07_037
crossref_primary_10_1007_s12550_012_0135_x
crossref_primary_10_1016_j_scitotenv_2023_165722
crossref_primary_10_3390_toxins13030189
crossref_primary_10_3390_toxins13060393
crossref_primary_10_1016_j_envint_2019_105082
crossref_primary_10_3390_toxins11110670
crossref_primary_10_1093_toxsci_kft145
crossref_primary_10_1080_1745039X_2019_1641369
crossref_primary_10_1007_s12349_013_0125_3
crossref_primary_10_3945_jn_110_137588
crossref_primary_10_1016_j_psj_2024_103816
crossref_primary_10_1016_j_taap_2021_115441
crossref_primary_10_3389_fmicb_2021_687533
crossref_primary_10_1016_j_anifeedsci_2016_06_006
crossref_primary_10_1080_10408398_2021_1954598
crossref_primary_10_3390_toxins10050183
crossref_primary_10_3390_toxins3101263
crossref_primary_10_3390_toxins8110345
crossref_primary_10_1016_j_cbi_2016_11_018
crossref_primary_10_3390_toxins11010018
crossref_primary_10_4161_tisb_24978
crossref_primary_10_1016_j_fct_2022_113044
crossref_primary_10_1093_jas_skae107
crossref_primary_10_1002_mnfr_201000402
crossref_primary_10_1186_s12864_016_2830_z
crossref_primary_10_1007_s12035_015_9262_7
crossref_primary_10_1038_s41598_019_55821_4
crossref_primary_10_3390_toxins5050912
crossref_primary_10_3390_toxins6051615
crossref_primary_10_1007_s00204_016_1902_9
crossref_primary_10_1186_s12864_016_2984_8
crossref_primary_10_14814_phy2_12090
crossref_primary_10_3390_toxins14050315
crossref_primary_10_1016_j_envpol_2024_125138
crossref_primary_10_1016_j_tjnut_2025_02_020
crossref_primary_10_3389_fmicb_2023_1259133
crossref_primary_10_3920_BM2018_0023
crossref_primary_10_3390_ijms20112777
crossref_primary_10_1016_j_ecoenv_2020_111376
crossref_primary_10_1016_j_tox_2016_05_003
crossref_primary_10_3390_toxins11120727
crossref_primary_10_1007_s00204_014_1284_9
crossref_primary_10_1021_acsfoodscitech_3c00434
crossref_primary_10_1016_j_taap_2015_04_002
crossref_primary_10_1186_s40104_022_00822_z
crossref_primary_10_1093_jmicro_dfy005
crossref_primary_10_3390_toxins15020120
crossref_primary_10_3390_toxins8090264
crossref_primary_10_1007_s00204_017_2118_3
crossref_primary_10_1016_j_toxlet_2014_10_022
crossref_primary_10_3390_toxins15060394
crossref_primary_10_1016_j_envpol_2021_116818
crossref_primary_10_1039_D3FO04898E
crossref_primary_10_1152_physrev_00041_2019
crossref_primary_10_1016_j_tjnut_2024_09_031
crossref_primary_10_1017_S0007114511004946
crossref_primary_10_1016_j_fct_2020_111241
crossref_primary_10_1016_j_ecoenv_2021_112221
crossref_primary_10_1155_2020_9834813
crossref_primary_10_1007_s00204_019_02425_6
crossref_primary_10_1016_j_scitotenv_2024_176937
crossref_primary_10_1096_fj_201902298R
crossref_primary_10_1007_s00204_014_1309_4
crossref_primary_10_1016_j_toxicon_2011_11_010
crossref_primary_10_1186_s40813_022_00254_1
crossref_primary_10_1016_j_etp_2014_10_001
crossref_primary_10_1371_journal_pone_0023871
crossref_primary_10_1152_ajpgi_00279_2020
crossref_primary_10_3945_an_112_002188
crossref_primary_10_3920_WMJ2019_2462
crossref_primary_10_3390_toxins16070297
crossref_primary_10_1016_j_bcp_2012_02_007
crossref_primary_10_1021_acs_jafc_9b01037
crossref_primary_10_1016_j_fbio_2023_102859
crossref_primary_10_18632_oncotarget_17886
crossref_primary_10_1016_j_taap_2013_05_023
crossref_primary_10_1007_s00204_016_1794_8
crossref_primary_10_3390_toxins13020171
crossref_primary_10_1177_1753425920937778
crossref_primary_10_2478_aoas_2023_0087
crossref_primary_10_3389_fvets_2021_628258
crossref_primary_10_1002_jat_3083
crossref_primary_10_1039_C9FO02933H
crossref_primary_10_3389_fimmu_2018_00186
crossref_primary_10_31665_JFB_2018_1130
crossref_primary_10_1016_j_toxlet_2015_09_019
crossref_primary_10_1093_toxsci_kfs239
crossref_primary_10_3390_ijms25189790
crossref_primary_10_3920_WMJ2019_2452
crossref_primary_10_1016_j_tiv_2012_09_020
crossref_primary_10_1007_s12550_017_0289_7
crossref_primary_10_3390_ijms19071923
crossref_primary_10_3390_metabo12070659
crossref_primary_10_1007_s00441_013_1676_9
crossref_primary_10_1096_fj_13_238717
crossref_primary_10_1016_j_fct_2022_112921
crossref_primary_10_1177_1753425920966686
crossref_primary_10_1093_jn_nxac200
crossref_primary_10_1007_s00204_014_1354_z
crossref_primary_10_1093_jas_skae099
crossref_primary_10_1038_s41598_024_82928_0
crossref_primary_10_1186_s40104_017_0210_4
crossref_primary_10_2903_j_efsa_2017_4718
crossref_primary_10_1039_C9RA06222J
crossref_primary_10_1007_s10616_011_9420_3
crossref_primary_10_1016_j_fct_2020_111962
crossref_primary_10_1016_j_jhazmat_2023_132013
crossref_primary_10_1016_j_fct_2016_06_012
crossref_primary_10_1371_journal_pone_0143640
crossref_primary_10_14814_phy2_12225
crossref_primary_10_1080_07060661_2022_2044910
crossref_primary_10_1002_jat_3989
crossref_primary_10_1155_2019_2682748
crossref_primary_10_1111_j_1462_5822_2012_01796_x
crossref_primary_10_1016_j_ajpath_2013_09_001
crossref_primary_10_1016_j_jhazmat_2024_134601
crossref_primary_10_3390_toxins5122341
crossref_primary_10_3390_antiox11091775
crossref_primary_10_1016_j_toxlet_2019_03_010
crossref_primary_10_1016_j_cnd_2021_02_001
crossref_primary_10_3389_fimmu_2024_1398403
crossref_primary_10_1186_1746_6148_8_245
crossref_primary_10_1016_j_toxrep_2014_05_001
crossref_primary_10_3390_toxins10120541
crossref_primary_10_1016_j_envpol_2019_06_001
crossref_primary_10_3390_toxins10010013
crossref_primary_10_1021_acs_chemrestox_6b00001
crossref_primary_10_3390_ani13243752
crossref_primary_10_1038_s41385_022_00565_0
crossref_primary_10_1002_jcp_25736
crossref_primary_10_1186_s40104_021_00596_w
crossref_primary_10_1016_j_fct_2021_112616
crossref_primary_10_3390_toxins7020593
crossref_primary_10_3390_nu9121343
crossref_primary_10_1016_j_toxlet_2020_07_032
crossref_primary_10_1016_j_toxicon_2013_01_024
crossref_primary_10_2527_jas_2012_6053
crossref_primary_10_1371_journal_pone_0179586
crossref_primary_10_3390_toxins15020085
crossref_primary_10_1021_acs_jafc_8b03662
crossref_primary_10_1016_j_tjnut_2023_09_026
crossref_primary_10_3390_antiox12081565
crossref_primary_10_3920_WMJ2020_2648
crossref_primary_10_3390_toxins14070497
crossref_primary_10_1016_j_jhazmat_2020_122087
crossref_primary_10_3945_jn_114_209486
crossref_primary_10_3390_toxins13050301
crossref_primary_10_3390_toxins8100270
crossref_primary_10_1186_s40104_023_00976_4
crossref_primary_10_1016_j_toxicon_2015_01_016
crossref_primary_10_1039_D0FO01579B
crossref_primary_10_1111_apt_12665
crossref_primary_10_1007_s00204_021_03044_w
crossref_primary_10_3389_fvets_2025_1493496
crossref_primary_10_3390_nu12072115
crossref_primary_10_1016_j_fct_2015_02_013
crossref_primary_10_1186_1297_9716_43_35
crossref_primary_10_1007_s12550_019_00342_2
crossref_primary_10_1371_journal_pone_0053647
crossref_primary_10_1016_j_toxlet_2017_08_080
crossref_primary_10_1080_10937404_2017_1326071
crossref_primary_10_1021_acsomega_1c00117
crossref_primary_10_1177_17534259211030563
crossref_primary_10_1007_s12550_016_0260_z
crossref_primary_10_1093_jas_sky378
crossref_primary_10_1186_s13567_016_0309_1
crossref_primary_10_3168_jds_2012_6200
crossref_primary_10_3389_fmicb_2021_643639
crossref_primary_10_3390_toxins12100628
crossref_primary_10_1021_jf400213q
crossref_primary_10_3390_ijms242015172
crossref_primary_10_3920_WMJ2014_1864
crossref_primary_10_3390_toxins5020396
crossref_primary_10_1016_j_bcp_2020_113898
crossref_primary_10_1016_j_tiv_2016_10_003
crossref_primary_10_3390_toxins12030146
crossref_primary_10_4315_JFP_22_077
crossref_primary_10_3390_toxins13110758
crossref_primary_10_2478_aoas_2019_0013
crossref_primary_10_1007_s12550_014_0212_4
crossref_primary_10_3390_toxins14040275
crossref_primary_10_1080_10408398_2023_2271101
crossref_primary_10_3390_toxins12100610
crossref_primary_10_1016_j_toxlet_2012_12_003
crossref_primary_10_1016_j_fct_2013_07_017
crossref_primary_10_1016_j_anifeedsci_2016_07_019
crossref_primary_10_3390_toxins11110665
Cites_doi 10.1016/j.taap.2008.04.004
10.1002/iub.175
10.1289/ehp.10663
10.1074/jbc.274.20.13985
10.1016/S0140-6736(89)91684-X
10.1073/pnas.0805761105
10.1016/j.toxlet.2005.12.006
10.1146/annurev.physiol.60.1.143
10.1128/IAI.01698-07
10.1016/j.tox.2007.10.002
10.1016/j.tiv.2009.07.015
10.1007/s00441-008-0689-2
10.1016/j.yexcr.2008.08.012
10.1093/toxsci/kfi146
10.1242/jcs.02915
10.1091/mbc.11.3.849
10.1186/1472-6793-6-2
10.1074/jbc.M211710200
10.1016/j.vetimm.2005.08.010
10.1093/nar/gng073
10.1093/toxsci/69.2.373
10.1016/j.bbrc.2007.07.168
10.1016/j.imbio.2007.05.002
10.1016/j.fct.2007.12.006
10.1017/S0007114509990213
10.1016/j.jaci.2009.05.038
10.1023/A:1006923808748
10.1093/jn/132.9.2723
10.1152/ajpcell.00007.2004
10.1074/jbc.M408122200
10.1093/toxsci/kfh006
10.1128/aem.57.3.672-677.1991
10.1042/BJ20050959
10.1074/jbc.M503786200
10.1016/j.taap.2010.03.012
10.1016/S0079-6107(98)00056-X
10.1016/j.taap.2009.03.003
10.1152/ajpgi.2001.280.1.G7
10.1093/toxsci/kfg006
10.1016/j.toxlet.2008.01.015
10.1016/j.tox.2009.06.014
10.1093/jaoac/78.3.631
10.1136/gut.2003.036632
10.1080/10937400590889458
10.1016/j.bbrc.2009.04.120
10.1152/ajpcell.00157.2008
10.1051/vetres:2006006
10.1016/j.molimm.2004.04.010
10.1016/j.fct.2006.05.018
10.1136/gut.2005.085373
10.1016/j.toxlet.2004.04.045
10.1016/0003-2697(73)90217-0
10.1007/s00418-008-0424-9
ContentType Journal Article
Copyright 2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
1XC
DOI 10.3945/jn.110.123919
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1541-6100
EndPage 1962
ExternalDocumentID oai_HAL_hal_02935487v1
20861219
23411465
10_3945_jn_110_123919
US201301901782
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
-~X
.55
.GJ
0R~
18M
29L
2WC
34G
39C
3O-
4.4
48X
53G
5GY
5RE
5VS
85S
A8Z
AABJS
AABMN
AABZA
AACZT
AAJQQ
AAPGJ
AAPQZ
AAUQX
AAVAP
AAWDT
AAWTL
AAXUO
AAYJJ
ABBTP
ABJNI
ABPTD
ABPTK
ABSAR
ABSGY
ABWST
ACFRR
ACGFO
ACGOD
ACIHN
ACIMA
ACKIV
ACNCT
ACUFI
ACUTJ
ADBBV
ADEIU
ADGZP
ADRTK
ADVEK
AEAQA
AENEX
AEQTP
AETBJ
AETEA
AFDAS
AFFNX
AFFZL
AFMIJ
AFOFC
AFRAH
AFXAL
AGINJ
AGQXC
AGUTN
AHMBA
AIKOY
AIMBJ
AJEEA
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AMRAJ
AQDSO
AQKUS
ASMCH
AZQFJ
BAWUL
BAYMD
BCR
BCRHZ
BES
BEYMZ
BKOMP
BLC
BTRTY
BYORX
C1A
CASEJ
CDBKE
DAKXR
DIK
DPPUQ
DU5
E3Z
EBS
EIHJH
EJD
ENERS
EX3
F5P
F9R
FBQ
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FRP
G8K
GAUVT
GJXCC
GX1
HF~
HZ~
IH2
K-O
KBUDW
KOP
KQ8
KSI
KSN
L7B
MBLQV
MHKGH
MV1
MVM
NHB
NHCRO
NOMLY
NOYVH
NVLIB
O9-
OAUYM
OBFPC
ODMLO
OHT
OJZSN
OK1
OPAEJ
OVD
P-O
P2P
PEA
PQQKQ
PRG
R0Z
RHF
RHI
ROL
ROX
SV3
TAE
TEORI
TMA
TN5
TNT
TR2
TWZ
UCJ
UHB
UKR
UPT
W2D
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XOL
XSW
Y6R
YBU
YHG
YKV
YQJ
YQT
YSK
ZGI
ZHY
ZXP
~KM
AAGQS
AALRI
AAYWO
AAYXX
ABDPE
ACVFH
ADCNI
ADMTO
ADUKH
ADVLN
AEUPX
AFJKZ
AFPUW
AGCQF
AGKRT
AIGII
AITUG
AKBMS
AKRWK
AKYEP
APXCP
CITATION
H13
NU-
YR5
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
UIG
VXZ
Z5M
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c393t-2fac8c8d419bee690a55e43e8e22f2a0689a54fceb617af0e9ed82ecc33cfa963
ISSN 0022-3166
1541-6100
IngestDate Fri Sep 12 12:39:14 EDT 2025
Thu Sep 04 16:44:19 EDT 2025
Sun Sep 28 06:49:06 EDT 2025
Wed Feb 19 02:25:04 EST 2025
Mon Jul 21 09:14:14 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
Tue Jul 01 03:04:48 EDT 2025
Wed Dec 27 19:16:21 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Nutrition
Digestive system
Enzyme
Barrier function
Transferases
Gut
Mitogen-activated protein kinase
Gene expression
Mechanism
Pig
Vertebrata
Mammalia
Decrease
Animal
Artiodactyla
Ungulata
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c393t-2fac8c8d419bee690a55e43e8e22f2a0689a54fceb617af0e9ed82ecc33cfa963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9918-277X
0000-0003-2638-2548
0000-0002-6802-1890
PMID 20861219
PQID 759876819
PQPubID 23479
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_02935487v1
proquest_miscellaneous_851592014
proquest_miscellaneous_759876819
pubmed_primary_20861219
pascalfrancis_primary_23411465
crossref_primary_10_3945_jn_110_123919
crossref_citationtrail_10_3945_jn_110_123919
fao_agris_US201301901782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-11-00
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-00
PublicationDecade 2010
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
PublicationTitle The Journal of nutrition
PublicationTitleAlternate J Nutr
PublicationYear 2010
Publisher American Society for Nutrition
Publisher_xml – name: American Society for Nutrition
References Pestka (10.3945/jn.110.123919_bib5) 2005; 8
Patrick (10.3945/jn.110.123919_bib57) 2006; 6
Zeissig (10.3945/jn.110.123919_bib40) 2004; 53
Lanaspa (10.3945/jn.110.123919_bib45) 2008; 105
Oswald (10.3945/jn.110.123919_bib15) 2006; 37
Gonzalez-Vallina (10.3945/jn.110.123919_bib22) 1996; 271
Schaffner (10.3945/jn.110.123919_bib26) 1973; 56
Zhou (10.3945/jn.110.123919_bib34) 2003; 72
Pinton (10.3945/jn.110.123919_bib21) 2009; 237
Sergent (10.3945/jn.110.123919_bib59) 2008; 46
Oswald (10.3945/jn.110.123919_bib1) 1998; 149
Moon (10.3945/jn.110.123919_bib8) 2002; 69
Lowell (10.3945/jn.110.123919_bib48) 2004; 41
Zhou (10.3945/jn.110.123919_bib9) 2005; 85
Trucksess (10.3945/jn.110.123919_bib32) 1995; 78
Moon (10.3945/jn.110.123919_bib37) 2007; 362
Kasuga (10.3945/jn.110.123919_bib19) 1998; 142
Schothorst (10.3945/jn.110.123919_bib3) 2004; 153
Oshima (10.3945/jn.110.123919_bib12) 2008; 295
De Walle (10.3945/jn.110.123919_bib52) 2010; 245
Meissonnier (10.3945/jn.110.123919_bib23) 2008; 231
Bhat (10.3945/jn.110.123919_bib30) 1989; 1
Abouzied (10.3945/jn.110.123919_bib33) 1991; 57
Bouhet (10.3945/jn.110.123919_bib58) 2006; 44
Maresca (10.3945/jn.110.123919_bib16) 2002; 132
Turner (10.3945/jn.110.123919_bib4) 2008; 116
Lipschutz (10.3945/jn.110.123919_bib27) 2005; 280
Kolf-Clauw (10.3945/jn.110.123919_bib18) 2009; 23
Findley (10.3945/jn.110.123919_bib53) 2009; 61
Madara (10.3945/jn.110.123919_bib39) 1998; 60
Bimczok (10.3945/jn.110.123919_bib36) 2007; 212
Pinton (10.3945/jn.110.123919_bib7) 2008; 177
Bouhet (10.3945/jn.110.123919_bib13) 2005; 108
Chen (10.3945/jn.110.123919_bib47) 2000; 11
Yang (10.3945/jn.110.123919_bib38) 2008; 243
Lamb-Rosteski (10.3945/jn.110.123919_bib42) 2008; 76
Michikawa (10.3945/jn.110.123919_bib44) 2008; 334
Ikari (10.3945/jn.110.123919_bib51) 2009; 384
Basuroy (10.3945/jn.110.123919_bib50) 2006; 393
Soderholm (10.3945/jn.110.123919_bib14) 2001; 280
Peirson (10.3945/jn.110.123919_bib24) 2003; 31
Wache (10.3945/jn.110.123919_bib6) 2009; 262
Aono (10.3945/jn.110.123919_bib55) 2008; 314
10.3945/jn.110.123919_bib31
Shen (10.3945/jn.110.123919_bib56) 2006; 119
Bouhet (10.3945/jn.110.123919_bib17) 2004; 77
(10.3945/jn.110.123919_bib2) 2003
Le Gall (10.3945/jn.110.123919_bib25) 2009; 102
Shifrin (10.3945/jn.110.123919_bib35) 1999; 274
Cobb (10.3945/jn.110.123919_bib11) 1999; 71
Sergent (10.3945/jn.110.123919_bib20) 2006; 164
Arrieta (10.3945/jn.110.123919_bib28) 2006; 55
Pestka (10.3945/jn.110.123919_bib10) 2008
Groschwitz (10.3945/jn.110.123919_bib29) 2009; 124
Forster (10.3945/jn.110.123919_bib41) 2008; 130
McLaughlin (10.3945/jn.110.123919_bib43) 2004; 287
Basuroy (10.3945/jn.110.123919_bib46) 2003; 278
Anderson (10.3945/jn.110.123919_bib49) 1995; 269
Tanaka (10.3945/jn.110.123919_bib54) 2005; 280
References_xml – volume: 231
  start-page: 142
  year: 2008
  ident: 10.3945/jn.110.123919_bib23
  article-title: Immunotoxicity of aflatoxin B1: impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression
  publication-title: Toxicol Appl Pharmacol.
  doi: 10.1016/j.taap.2008.04.004
– volume: 61
  start-page: 431
  year: 2009
  ident: 10.3945/jn.110.123919_bib53
  article-title: Regulation and roles for claudin-family tight junction proteins
  publication-title: IUBMB Life.
  doi: 10.1002/iub.175
– volume: 116
  start-page: 21
  year: 2008
  ident: 10.3945/jn.110.123919_bib4
  article-title: Urinary deoxynivalenol is correlated with cereal intake in individuals from the United Kingdom
  publication-title: Environ Health Perspect.
  doi: 10.1289/ehp.10663
– volume: 274
  start-page: 13985
  year: 1999
  ident: 10.3945/jn.110.123919_bib35
  article-title: Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.274.20.13985
– volume: 1
  start-page: 35
  year: 1989
  ident: 10.3945/jn.110.123919_bib30
  article-title: Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat production in Kashmir Valley, India
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(89)91684-X
– volume: 105
  start-page: 15797
  year: 2008
  ident: 10.3945/jn.110.123919_bib45
  article-title: Hypertonic stress increases claudin-4 expression and tight junction integrity in association with MUPP1 in IMCD3 cells
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0805761105
– volume: 164
  start-page: 167
  year: 2006
  ident: 10.3945/jn.110.123919_bib20
  article-title: Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations
  publication-title: Toxicol Lett.
  doi: 10.1016/j.toxlet.2005.12.006
– volume: 60
  start-page: 143
  year: 1998
  ident: 10.3945/jn.110.123919_bib39
  article-title: Regulation of the movement of solutes across tight junctions
  publication-title: Annu Rev Physiol.
  doi: 10.1146/annurev.physiol.60.1.143
– volume: 76
  start-page: 3390
  year: 2008
  ident: 10.3945/jn.110.123919_bib42
  article-title: Epidermal growth factor inhibits Campylobacter jejuni-induced claudin-4 disruption, loss of epithelial barrier function, and Escherichia coli translocation
  publication-title: Infect Immun.
  doi: 10.1128/IAI.01698-07
– volume: 243
  start-page: 145
  year: 2008
  ident: 10.3945/jn.110.123919_bib38
  article-title: Ribotoxic mycotoxin deoxynivalenol induces G(2)/M cell cycle arrest via p21(Cip/WAF1) mRNA stabilization in human epithelial cells
  publication-title: Toxicology.
  doi: 10.1016/j.tox.2007.10.002
– volume: 23
  start-page: 1580
  year: 2009
  ident: 10.3945/jn.110.123919_bib18
  article-title: Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis
  publication-title: Toxicol In Vitro.
  doi: 10.1016/j.tiv.2009.07.015
– volume: 334
  start-page: 255
  year: 2008
  ident: 10.3945/jn.110.123919_bib44
  article-title: Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-008-0689-2
– volume: 314
  start-page: 3326
  year: 2008
  ident: 10.3945/jn.110.123919_bib55
  article-title: Phosphorylation of claudin-4 is required for tight junction formation in a human keratinocyte cell line
  publication-title: Exp Cell Res.
  doi: 10.1016/j.yexcr.2008.08.012
– volume: 85
  start-page: 916
  year: 2005
  ident: 10.3945/jn.110.123919_bib9
  article-title: Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck
  publication-title: Toxicol Sci.
  doi: 10.1093/toxsci/kfi146
– volume: 119
  start-page: 2095
  year: 2006
  ident: 10.3945/jn.110.123919_bib56
  article-title: Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure
  publication-title: J Cell Sci.
  doi: 10.1242/jcs.02915
– volume: 269
  start-page: G467
  year: 1995
  ident: 10.3945/jn.110.123919_bib49
  article-title: Tight junctions and the molecular basis for regulation of paracellular permeability
  publication-title: Am J Physiol.
– volume: 11
  start-page: 849
  year: 2000
  ident: 10.3945/jn.110.123919_bib47
  article-title: Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells
  publication-title: Mol Biol Cell.
  doi: 10.1091/mbc.11.3.849
– volume: 6
  start-page: 2
  year: 2006
  ident: 10.3945/jn.110.123919_bib57
  article-title: Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma modulate epithelial barrier function in Madin-Darby canine kidney cells through mitogen activated protein kinase signaling
  publication-title: BMC Physiol.
  doi: 10.1186/1472-6793-6-2
– volume: 278
  start-page: 11916
  year: 2003
  ident: 10.3945/jn.110.123919_bib46
  article-title: Expression of kinase-inactive c-Src delays oxidative stress-induced disassembly and accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M211710200
– volume: 108
  start-page: 199
  year: 2005
  ident: 10.3945/jn.110.123919_bib13
  article-title: The effects of mycotoxins, fungal food contaminants, on the intestinal epithelial cell-derived innate immune response
  publication-title: Vet Immunol Immunopathol.
  doi: 10.1016/j.vetimm.2005.08.010
– volume: 31
  start-page: e73
  year: 2003
  ident: 10.3945/jn.110.123919_bib24
  article-title: Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gng073
– volume: 69
  start-page: 373
  year: 2002
  ident: 10.3945/jn.110.123919_bib8
  article-title: Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases
  publication-title: Toxicol Sci.
  doi: 10.1093/toxsci/69.2.373
– volume: 362
  start-page: 256
  year: 2007
  ident: 10.3945/jn.110.123919_bib37
  article-title: Modulation of early growth response gene 1 and interleukin-8 expression by ribotoxin deoxynivalenol (vomitoxin) via ERK1/2 in human epithelial intestine 407 cells
  publication-title: Biochem Biophys Res Commun.
  doi: 10.1016/j.bbrc.2007.07.168
– volume: 212
  start-page: 655
  year: 2007
  ident: 10.3945/jn.110.123919_bib36
  article-title: The Fusarium toxin deoxynivalenol disrupts phenotype and function of monocyte-derived dendritic cells in vivo and in vitro
  publication-title: Immunobiology.
  doi: 10.1016/j.imbio.2007.05.002
– start-page: 136
  year: 2003
  ident: 10.3945/jn.110.123919_bib2
– volume: 46
  start-page: 813
  year: 2008
  ident: 10.3945/jn.110.123919_bib59
  article-title: Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level
  publication-title: Food Chem Toxicol.
  doi: 10.1016/j.fct.2007.12.006
– volume: 102
  start-page: 1285
  year: 2009
  ident: 10.3945/jn.110.123919_bib25
  article-title: Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets
  publication-title: Br J Nutr.
  doi: 10.1017/S0007114509990213
– volume: 124
  start-page: 3
  year: 2009
  ident: 10.3945/jn.110.123919_bib29
  article-title: Intestinal barrier function: molecular regulation and disease pathogenesis
  publication-title: J Allergy Clin Immunol.
  doi: 10.1016/j.jaci.2009.05.038
– volume: 149
  start-page: 585
  year: 1998
  ident: 10.3945/jn.110.123919_bib1
  article-title: Immunotoxicity of mycotoxins
  publication-title: Rev Med Vet.
– volume: 142
  start-page: 161
  year: 1998
  ident: 10.3945/jn.110.123919_bib19
  article-title: In vitro effect of deoxynivalenol on the differentiation of human colonic cell lines Caco-2 and T84
  publication-title: Mycopathologia.
  doi: 10.1023/A:1006923808748
– volume: 132
  start-page: 2723
  year: 2002
  ident: 10.3945/jn.110.123919_bib16
  article-title: The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells
  publication-title: J Nutr.
  doi: 10.1093/jn/132.9.2723
– volume: 287
  start-page: C1412
  year: 2004
  ident: 10.3945/jn.110.123919_bib43
  article-title: Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms
  publication-title: Am J Physiol Cell Physiol.
  doi: 10.1152/ajpcell.00007.2004
– volume: 280
  start-page: 3780
  year: 2005
  ident: 10.3945/jn.110.123919_bib27
  article-title: Extracellular signal-regulated kinases 1/2 control claudin-2 expression in Madin-Darby canine kidney strain I and II cells
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M408122200
– volume: 77
  start-page: 165
  year: 2004
  ident: 10.3945/jn.110.123919_bib17
  article-title: The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells
  publication-title: Toxicol Sci.
  doi: 10.1093/toxsci/kfh006
– volume: 57
  start-page: 672
  year: 1991
  ident: 10.3945/jn.110.123919_bib33
  article-title: Immunochemical assessment of mycotoxins in 1989 grain foods: evidence for deoxynivalenol (vomitoxin) contamination
  publication-title: Appl Environ Microbiol.
  doi: 10.1128/aem.57.3.672-677.1991
– volume: 393
  start-page: 69
  year: 2006
  ident: 10.3945/jn.110.123919_bib50
  article-title: MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide
  publication-title: Biochem J.
  doi: 10.1042/BJ20050959
– ident: 10.3945/jn.110.123919_bib31
– volume: 280
  start-page: 42375
  year: 2005
  ident: 10.3945/jn.110.123919_bib54
  article-title: EphA2 phosphorylates the cytoplasmic tail of claudin-4 and mediates paracellular permeability
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.M503786200
– volume: 245
  start-page: 291
  year: 2010
  ident: 10.3945/jn.110.123919_bib52
  article-title: Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis
  publication-title: Toxicol Appl Pharmacol.
  doi: 10.1016/j.taap.2010.03.012
– volume: 71
  start-page: 479
  year: 1999
  ident: 10.3945/jn.110.123919_bib11
  article-title: MAP kinase pathways
  publication-title: Prog Biophys Mol Biol.
  doi: 10.1016/S0079-6107(98)00056-X
– volume: 237
  start-page: 41
  year: 2009
  ident: 10.3945/jn.110.123919_bib21
  article-title: The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression
  publication-title: Toxicol Appl Pharmacol.
  doi: 10.1016/j.taap.2009.03.003
– volume: 280
  start-page: G7
  year: 2001
  ident: 10.3945/jn.110.123919_bib14
  article-title: Stress and gastrointestinal tract. II. Stress and intestinal barrier function
  publication-title: Am J Physiol Gastrointest Liver Physiol.
  doi: 10.1152/ajpgi.2001.280.1.G7
– volume: 271
  start-page: G249
  year: 1996
  ident: 10.3945/jn.110.123919_bib22
  article-title: Lipoprotein and apolipoprotein secretion by a newborn piglet intestinal cell line (IPEC-1)
  publication-title: Am J Physiol.
– volume: 72
  start-page: 130
  year: 2003
  ident: 10.3945/jn.110.123919_bib34
  article-title: Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin
  publication-title: Toxicol Sci.
  doi: 10.1093/toxsci/kfg006
– volume: 177
  start-page: 215
  year: 2008
  ident: 10.3945/jn.110.123919_bib7
  article-title: Ingestion of deoxynivalenol (DON) contaminated feed alters the pig vaccinal immune responses
  publication-title: Toxicol Lett.
  doi: 10.1016/j.toxlet.2008.01.015
– volume: 262
  start-page: 239
  year: 2009
  ident: 10.3945/jn.110.123919_bib6
  article-title: The mycotoxin deoxynivalenol inhibits the cell surface expression of activation markers in human macrophages
  publication-title: Toxicology.
  doi: 10.1016/j.tox.2009.06.014
– volume: 78
  start-page: 631
  year: 1995
  ident: 10.3945/jn.110.123919_bib32
  article-title: Survey of deoxynivalenol in U.S. 1993 wheat and barley crops by enzyme-linked immunosorbent assay
  publication-title: J AOAC Int.
  doi: 10.1093/jaoac/78.3.631
– volume: 53
  start-page: 1295
  year: 2004
  ident: 10.3945/jn.110.123919_bib40
  article-title: Downregulation of epithelial apoptosis and barrier repair in active Crohn’s disease by tumour necrosis factor alpha antibody treatment
  publication-title: Gut.
  doi: 10.1136/gut.2003.036632
– start-page: 241
  year: 2008
  ident: 10.3945/jn.110.123919_bib10
  article-title: Mechanisms of deoxynivalenol-induced gene expression and apoptosis
  publication-title: Food Addit Contam.
– volume: 8
  start-page: 39
  year: 2005
  ident: 10.3945/jn.110.123919_bib5
  article-title: Deoxynivalenol: toxicology and potential effects on humans
  publication-title: J Toxicol Environ Health B Crit Rev.
  doi: 10.1080/10937400590889458
– volume: 384
  start-page: 306
  year: 2009
  ident: 10.3945/jn.110.123919_bib51
  article-title: Epidermal growth factor increases claudin-4 expression mediated by Sp1 elevation in MDCK cells
  publication-title: Biochem Biophys Res Commun.
  doi: 10.1016/j.bbrc.2009.04.120
– volume: 295
  start-page: C800
  year: 2008
  ident: 10.3945/jn.110.123919_bib12
  article-title: Aspirin induces gastric epithelial barrier dysfunction by activating p38 MAPK via claudin-7
  publication-title: Am J Physiol Cell Physiol.
  doi: 10.1152/ajpcell.00157.2008
– volume: 37
  start-page: 359
  year: 2006
  ident: 10.3945/jn.110.123919_bib15
  article-title: Role of intestinal epithelial cells in the innate immune defence of the pig intestine
  publication-title: Vet Res.
  doi: 10.1051/vetres:2006006
– volume: 41
  start-page: 631
  year: 2004
  ident: 10.3945/jn.110.123919_bib48
  article-title: Src-family kinases: rheostats of immune cell signaling
  publication-title: Mol Immunol.
  doi: 10.1016/j.molimm.2004.04.010
– volume: 44
  start-page: 1768
  year: 2006
  ident: 10.3945/jn.110.123919_bib58
  article-title: Mycotoxin fumonisin B1 selectively down-regulates the basal IL-8 expression in pig intestine: in vivo and in vitro studies
  publication-title: Food Chem Toxicol.
  doi: 10.1016/j.fct.2006.05.018
– volume: 55
  start-page: 1512
  year: 2006
  ident: 10.3945/jn.110.123919_bib28
  article-title: Alterations in intestinal permeability
  publication-title: Gut.
  doi: 10.1136/gut.2005.085373
– volume: 153
  start-page: 133
  year: 2004
  ident: 10.3945/jn.110.123919_bib3
  article-title: Report from SCOOP task 3.2.10 "collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states". Subtask: trichothecenes
  publication-title: Toxicol Lett.
  doi: 10.1016/j.toxlet.2004.04.045
– volume: 56
  start-page: 502
  year: 1973
  ident: 10.3945/jn.110.123919_bib26
  article-title: A rapid, sensitive and specific method for the determination of protein in dilute solution
  publication-title: Anal Biochem.
  doi: 10.1016/0003-2697(73)90217-0
– volume: 130
  start-page: 55
  year: 2008
  ident: 10.3945/jn.110.123919_bib41
  article-title: Tight junctions and the modulation of barrier function in disease
  publication-title: Histochem Cell Biol.
  doi: 10.1007/s00418-008-0424-9
SSID ssj0001498
Score 2.4534404
Snippet Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1956
SubjectTerms animal models
animal proteins
Animals
biochemical pathways
Biological and medical sciences
Cell Line
cell lines
Cell Membrane Permeability - drug effects
Claudin-4
deoxynivalenol
Down-Regulation - drug effects
Electric Impedance
Enterocytes - drug effects
Enterocytes - metabolism
enzyme activation
Enzyme Activation - drug effects
enzyme inhibition
enzyme inhibitors
Enzyme Inhibitors - pharmacology
epithelial cells
Extracellular Signal-Regulated MAP Kinases - antagonists & inhibitors
Extracellular Signal-Regulated MAP Kinases - physiology
Feeding. Feeding behavior
Foodborne Diseases - physiopathology
Fundamental and applied biological sciences. Psychology
human nutrition
intestinal mucosa
Intestinal Mucosa - drug effects
Intestinal Mucosa - metabolism
Intestinal Mucosa - pathology
Life Sciences
Membrane Proteins - genetics
Membrane Proteins - physiology
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3 - antagonists & inhibitors
Mitogen-Activated Protein Kinase 3 - metabolism
permeability
phosphorylation
Phosphorylation - drug effects
Poisons - pharmacology
protein synthesis
RNA, Messenger - metabolism
Signal Transduction - drug effects
Swine
Tight Junctions - drug effects
Tight Junctions - metabolism
Toxicology
Toxicology and food chain
Trichothecenes - pharmacology
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Title Deoxynivalenol Impairs Porcine Intestinal Barrier Function and Decreases the Protein Expression of Claudin-4 through a Mitogen-Activated Protein Kinase-Dependent Mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/20861219
https://www.proquest.com/docview/759876819
https://www.proquest.com/docview/851592014
https://hal.inrae.fr/hal-02935487
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUJIe4Ll8lCaC8lIxcnjR8HA1Xb6AOsYm-R4zjQ0iZVm06Mv8Qf4WdxTuK4zVgl4CWqEjuxej4ff8c-F0JecsX8hIfS5mmf2ayfcjvKJLNDjyV9HvlZyjDe-cMwHIzYyUVw0en82vBaWpXJofxxY1zJ_0gV7oFcMUr2HyRrXgo34DfIF64gYbj-lYyPVfH9Kh_DK1VeTKuIx_Fi2QNKjcflVSoImMHINxOxqErT4TJWNh7IaUUZl5jkoYqXKrDyJeb8r31jKyIpp2IFy5vNTEUf0ZuBFoAx2RgTcSmQsjZ9v8HHlspuKuuWvZnCyOImTeFkDc0NIpw3BQGMmh7n2qm_3u6Zb578j-Wq2twtFrmajs2iMoSxiauFqrMInyiR29c7nwncnir1oUHlIfBmqv9Qve-BPiRm30NpXc1csHwdp6XM6-RPDWrdDd2MkZE3LRo-Z5hfY5JjSMQhrOS8VuIbAJrPKgR5YP-5jYpvZ-luHu2QXa8PLK5Ldo9OP34-NawALNGozvGK33vd-hpmpNb9W_RoJxMFXL-ii-7tuVjCrM3qcivb7aGKF53fJXe0HOlRjc57pKPy-8Q6HquSHlCddXZKh42MH5CfbdRSjVqqUUvXqKUatbRBLQXUUoNaCqilGnl0jVpaZNSglmrUUkH_QK3pex211KD2IRm9f3f-dmDrkiG29Llf2l4mZCSjlLk8USrkjggC0EYqUp6XecIJIy4ClkmVAHMXmaO4SiMP1Jjvy0zAYvSIdPMiV3uEstRXeEQpZMjBqveiBGyflEvfDR0huLDIq0ZSsdT59LGsyzQGuxplHE9ysK_Bxq5kbJED03xeJ5LZ1nAPxB6LL7DIx6NPHroWIGsHKm-RF4AF0x0zww-OzmK85wBtx82HS9ci-y2omOYeEFbgRYFFaIOdGNYSPCAUuSpWy7gfcCBHEY5hW5MI7R8YE7PI4xp26_drCD_Z-uQpubWeyc9It1ys1HPg9GWyr6fLbyyaABI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deoxynivalenol+impairs+porcine+intestinal+barrier+function+and+decreases+the+protein+expression+of+claudin-4+through+a+mitogen-activated+protein+kinase-dependent+mechanism&rft.jtitle=The+Journal+of+nutrition&rft.au=Pinton%2C+Philippe&rft.au=Braicu%2C+Cornelia&rft.au=Nougayrede%2C+Jean-Philippe&rft.au=Laffitte%2C+Jo%C3%ABlle&rft.date=2010-11-01&rft.eissn=1541-6100&rft.volume=140&rft.issue=11&rft.spage=1956&rft_id=info:doi/10.3945%2Fjn.110.123919&rft_id=info%3Apmid%2F20861219&rft.externalDocID=20861219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3166&client=summon