Deoxynivalenol Impairs Porcine Intestinal Barrier Function and Decreases the Protein Expression of Claudin-4 through a Mitogen-Activated Protein Kinase-Dependent Mechanism

Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 prot...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of nutrition Vol. 140; no. 11; pp. 1956 - 1962
Main Authors Pinton, Philippe, Braicu, Cornelia, Nougayrede, Jean-Philippe, Laffitte, Joëlle, Taranu, Ionelia, Oswald, Isabelle P
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Nutrition 01.11.2010
Subjects
Gut
Pig
Online AccessGet full text
ISSN0022-3166
1541-6100
1541-6100
DOI10.3945/jn.110.123919

Cover

More Information
Summary:Deoxynivalenol (DON) is a common mycotoxin that contaminates cereals and their by-products. The gastrointestinal tract is the first physical barrier against ingested food contaminants. DON contributes to the loss of barrier function of the intestine through the decreased expression of claudin-4 protein, a tight junction protein. The mechanism by which DON alters the intestinal barrier function remains poorly characterized. Therefore, we investigated the involvement of mitogen-activated protein kinases (MAPK) in the DON-induced loss of barrier function. We first verified that 30 μmol/L of DON activated MAPK in a highly sensitive porcine intestinal epithelial cell line (IPEC-1). Inhibition of p44/42 extracellular signal-regulated kinase (ERK) phosphorylation, with 0.5 μmol/L of the specific MAPK pharmacological inhibitor U0126 for 2 h, restored the barrier function of the differentiated intestinal epithelial cell monolayers. The restoration of barrier function was evaluated by trans-epithelial electrical resistance measurements and tracer flux paracellular permeability experiments. The U0126 also restored the intestinal expression of claudin-4 protein, thereby demonstrating that MAPK activation is involved in claudin-4 protein expression and claudin-4 is involved in the maintenance of the intestinal epithelial cell barrier function. Further experiments indicated that p44/42 ERK is not involved in the transcriptional regulation of claudin-4. In conclusion, we demonstrated that DON-induced activation of the p44/42 ERK signaling pathway inhibits the expression of claudin-4 protein, which leads to impaired intestinal barrier function. Given the high levels of DON in cereal grains, these observations of impaired barrier function have implications for human and animal health.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3166
1541-6100
1541-6100
DOI:10.3945/jn.110.123919