Dynamic Coding-Based Control Scheme Under Lossy Digital Network: An Optimized Time-Varying Packet Length Approach

This work proposes a design scheme of the desired controller under the lossy digital network by introducing a dynamic coding and packet-length optimization strategy. First, the weighted try once-discard (WTOD) protocol is introduced to schedule the transmission of sensor nodes. The state-dependent d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 5; pp. 1 - 11
Main Authors Li, Jiarui, Niu, Yugang, Ho, Daniel W. C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2022.3232529

Cover

More Information
Summary:This work proposes a design scheme of the desired controller under the lossy digital network by introducing a dynamic coding and packet-length optimization strategy. First, the weighted try once-discard (WTOD) protocol is introduced to schedule the transmission of sensor nodes. The state-dependent dynamic quantizer and the encoding function with time-varying coding length are designed to improve coding accuracy significantly. Then, a feasible state-feedback controller is designed to attain that the controlled system subject to possible packet dropout is exponentially ultimately bounded in the mean-square sense. Moreover, it is shown that the coding error directly affects the convergent upper bound, which is further minimized by optimizing the coding lengths. Finally, the simulation results are provided via the double-sided linear switched reluctance machine systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2022.3232529