Early Detection of Alzheimer's Disease with Blood Plasma Proteins Using Support Vector Machines

The successful development of amyloid-based biomarkers and tests for Alzheimer's disease (AD) represents an important milestone in AD diagnosis. However, two major limitations remain. Amyloid-based diagnostic biomarkers and tests provide limited information about the disease process and they ar...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 25; no. 1; pp. 218 - 226
Main Authors Eke, Chima S., Jammeh, Emmanuel, Li, Xinzhong, Carroll, Camille, Pearson, Stephen, Ifeachor, Emmanuel
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2020.2984355

Cover

More Information
Summary:The successful development of amyloid-based biomarkers and tests for Alzheimer's disease (AD) represents an important milestone in AD diagnosis. However, two major limitations remain. Amyloid-based diagnostic biomarkers and tests provide limited information about the disease process and they are unable to identify individuals with the disease before significant amyloid-beta accumulation in the brain develops. The objective in this study is to develop a method to identify potential blood-based non-amyloid biomarkers for early AD detection. The use of blood is attractive because it is accessible and relatively inexpensive. Our method is mainly based on machine learning (ML) techniques (support vector machines in particular) because of their ability to create multivariable models by learning patterns from complex data. Using novel feature selection and evaluation modalities, we identified 5 novel panels of non-amyloid proteins with the potential to serve as biomarkers of early AD. In particular, we found that the combination of A2M, ApoE, BNP, Eot3, RAGE and SGOT may be a key biomarker profile of early disease. Disease detection models based on the identified panels achieved sensitivity (SN) > 80%, specificity (SP) > 70%, and area under receiver operating curve (AUC) of at least 0.80 at prodromal stage (with higher performance at later stages) of the disease. Existing ML models performed poorly in comparison at this stage of the disease, suggesting that the underlying protein panels may not be suitable for early disease detection. Our results demonstrate the feasibility of early detection of AD using non-amyloid based biomarkers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2020.2984355