Parkinson's Disease Detection Based on Running Speech Data From Phone Calls
Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offe...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 69; no. 5; pp. 1573 - 1584 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2021.3116935 |
Cover
| Abstract | Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis. Methods: A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients). Results: By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively. Conclusions: The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data. Significance: This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls. |
|---|---|
| AbstractList | Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis. Methods: A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients). Results: By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively. Conclusions: The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data. Significance: This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls. Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis. A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients). By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively. The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data. This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls. Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis.OBJECTIVEParkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis.A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients).METHODSA privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients).By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively.RESULTSBy means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively.The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data.CONCLUSIONSThe proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data.This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls.SIGNIFICANCEThis paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls. |
| Author | Laganas, Christos Klingelhoefer, Lisa Hadjileontiadis, Leontios J. Bostantzopoulou, Sevasti Iakovakis, Dimitrios Charisis, Vasileios Chaudhuri, K. Ray Hadjidimitriou, Stelios Katsarou, Zoe Dias, Sofia B. Reichmann, Heinz Trivedi, Dhaval |
| Author_xml | – sequence: 1 givenname: Christos orcidid: 0000-0002-4308-4377 surname: Laganas fullname: Laganas, Christos organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece – sequence: 2 givenname: Dimitrios orcidid: 0000-0002-6854-5942 surname: Iakovakis fullname: Iakovakis, Dimitrios organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece – sequence: 3 givenname: Stelios orcidid: 0000-0002-3676-6556 surname: Hadjidimitriou fullname: Hadjidimitriou, Stelios organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece – sequence: 4 givenname: Vasileios orcidid: 0000-0001-8007-2343 surname: Charisis fullname: Charisis, Vasileios organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece – sequence: 5 givenname: Sofia B. surname: Dias fullname: Dias, Sofia B. organization: CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal – sequence: 6 givenname: Sevasti surname: Bostantzopoulou fullname: Bostantzopoulou, Sevasti organization: 3rd Department of Neurology, G. Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Greece – sequence: 7 givenname: Zoe surname: Katsarou fullname: Katsarou, Zoe organization: Department of Neurology, Hippokration Hospital, Greece – sequence: 8 givenname: Lisa surname: Klingelhoefer fullname: Klingelhoefer, Lisa organization: Department of Neurology, Technical University of Dresden, Germany – sequence: 9 givenname: Heinz surname: Reichmann fullname: Reichmann, Heinz organization: Department of Neurology, Technical University of Dresden, Germany – sequence: 10 givenname: Dhaval orcidid: 0000-0003-2319-8024 surname: Trivedi fullname: Trivedi, Dhaval organization: King's College Hospital NHS Foundation Trust, U.K – sequence: 11 givenname: K. Ray surname: Chaudhuri fullname: Chaudhuri, K. Ray organization: King's College Hospital NHS Foundation Trust, U.K – sequence: 12 givenname: Leontios J. orcidid: 0000-0002-9932-9302 surname: Hadjileontiadis fullname: Hadjileontiadis, Leontios J. email: leontios@auth.gr organization: Department of Biomedical Engineering/Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, UAE |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34596531$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9PGzEQxa2KqoTQD1BVqixxgMum_ru2jyUhUJUKBPRseTezYLrxpvauEN8eRwkcgtSTPaPf8zy_OUB7oQuA0BdKJpQS8_3u9PfZhBFGJ5zS0nD5AY2olLpgktM9NCKE6sIwI_bRQUqPuRRalJ_QPhfSlJkZoV_XLv71IXXhOOGZT-AS4Bn0UPe-C_g0lwucLzdDCD7c49sVQP2AZ653eB67Jb5-yJ7w1LVtOkQfG9cm-Lw9x-jP_OxuelFcXp3_nP64LGpuWF9UplScl8oIt2hqB1A1QmimFQMnhS5zq5G1k4RJ0tCKOMhNUzHOF5oIqfkYsc27Q1i556c82q6iX7r4bCmx62RsXy3BrpOx22Sy6GQjWsXu3wCpt0ufamhbF6AbkmVSaaWUISKjRzvoYzfEkL9kWU6NK0aUydS3LTXkYYs3C6_ZZoBugDp2KUVo3rlc72_XpdrR1L5361X00fn2v8qvG6UHgLdJRsqy5Iy_AC3Eozs |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1109_TMM_2022_3216961 crossref_primary_10_1016_j_vrih_2024_08_001 crossref_primary_10_1016_j_artmed_2025_103109 crossref_primary_10_2196_63004 crossref_primary_10_2139_ssrn_4173535 crossref_primary_10_1016_j_artmed_2024_102810 crossref_primary_10_3390_app122211601 crossref_primary_10_1016_j_compbiomed_2022_106517 crossref_primary_10_3390_bioengineering10050531 crossref_primary_10_1055_a_2133_3482 crossref_primary_10_3390_jcm13185573 crossref_primary_10_1007_s11042_023_15302_3 crossref_primary_10_1038_s41598_024_81824_x crossref_primary_10_1002_mds_29921 crossref_primary_10_2196_46105 crossref_primary_10_1038_s41531_023_00494_0 crossref_primary_10_1016_j_medntd_2023_100266 crossref_primary_10_1007_s12559_024_10254_8 crossref_primary_10_1007_s11042_023_17762_z crossref_primary_10_1007_s00702_024_02874_z crossref_primary_10_1038_s41598_023_38782_7 crossref_primary_10_1007_s00702_022_02575_5 crossref_primary_10_1371_journal_pone_0284667 crossref_primary_10_1109_JBHI_2023_3267095 crossref_primary_10_3390_s22124434 crossref_primary_10_1007_s12065_023_00859_7 crossref_primary_10_3233_JIFS_230183 crossref_primary_10_1136_bmjopen_2021_059871 crossref_primary_10_3390_app14177873 |
| Cites_doi | 10.21437/interspeech.2015-34 10.1038/s41531-018-0046-4 10.1002/ana.26085 10.1016/S1474-4422(20)30115-0 10.1017/CBO9780511801389 10.1212/WNL.0000000000002350 10.1121/1.1908630 10.1109/STSIVA.2014.7010173 10.1109/TBME.2012.2183367 10.1145/1273496.1273510 10.1016/S1474-4422(14)70287-X 10.1109/JSTSP.2007.910971 10.1109/ACCESS.2021.3057715 10.1007/BF00116251 10.2217/nmt-2019-0037 10.1002/mds.22340 10.1016/j.bandl.2016.11.005 10.1007/s10994-013-5429-5 10.1109/JBHI.2018.2866873 10.1016/j.csl.2019.101047 10.1109/TNSRE.2018.2851787 10.1145/1015330.1015435 10.1007/978-3-319-10816-2_45 10.1016/j.bbe.2013.10.003 10.1109/JBHI.2019.2961748 10.1007/s00702-017-1676-0 10.1093/biomet/54.1-2.167 10.1214/aoms/1177730491 10.1136/jnnp.73.5.529 10.1007/978-3-319-57959-7 10.1016/j.cmpb.2015.12.011 10.1121/1.5100272 10.1038/sdata.2016.11 10.1016/j.euroneuro.2005.04.007 10.1093/hmg/ddm159 10.1098/rsif.2010.0456 10.3389/fict.2018.00028 10.1016/0169-7439(89)80095-4 10.1093/brain/awz111 10.1038/nrneurol.2015.249 10.1016/0004-3702(94)00094-8 10.1136/jnnp.2007.131045 10.1177/154405910408300516 10.1080/136828200410654 10.1016/j.bandc.2004.05.002 10.1155/1999/327643 10.1109/TNNLS.2013.2292894 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| DOI | 10.1109/TBME.2021.3116935 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 1584 |
| ExternalDocumentID | 10.1109/tbme.2021.3116935 34596531 10_1109_TBME_2021_3116935 9556632 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: European Union's Horizon 2020 Research and Innovation Programme grantid: 690494-i-PROGNOSIS |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c392t-b967336794adfcaeebf4482872ea5486caef5ca50250f1b0ae4869b233d804583 |
| IEDL.DBID | UNPAY |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Tue Aug 19 20:17:18 EDT 2025 Sun Sep 28 06:39:03 EDT 2025 Mon Jun 30 08:14:22 EDT 2025 Thu Apr 03 07:09:17 EDT 2025 Wed Oct 01 04:08:53 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Aug 27 02:40:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-b967336794adfcaeebf4482872ea5486caef5ca50250f1b0ae4869b233d804583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8007-2343 0000-0002-9932-9302 0000-0002-4308-4377 0000-0002-6854-5942 0000-0002-3676-6556 0000-0003-2319-8024 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/10/9761805/09556632.pdf |
| PMID | 34596531 |
| PQID | 2653372079 |
| PQPubID | 85474 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_34596531 ieee_primary_9556632 crossref_primary_10_1109_TBME_2021_3116935 proquest_miscellaneous_2578777904 unpaywall_primary_10_1109_tbme_2021_3116935 crossref_citationtrail_10_1109_TBME_2021_3116935 proquest_journals_2653372079 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 Fox (ref49) 1968 Maron (ref42) 1998 Pedregosa (ref46) 2011; 12 ref17 ref16 ref19 ref18 ref51 ref50 ref47 Gartner (ref43) 2002 ref41 ref44 ref7 Stephen (ref2) 2003; 157 Arias-Vergara (ref54) 2016 ref9 ref4 Jaeger (ref32) 2022 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 Andrews (ref45) 2003; 15 ref1 ref39 ref38 Logan (ref33) 2000; 270 Rtsch (ref59) 2000 Fahn (ref8) 1987 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Fonti (ref48) 2017; 30 ref28 ref27 ref29 |
| References_xml | – ident: ref24 doi: 10.21437/interspeech.2015-34 – start-page: 341 volume-title: Proc. Pacific-Asia Conf. Knowl. Discov. Data Mining year: 2000 ident: ref59 article-title: Robust ensemble learning for data mining – ident: ref11 doi: 10.1038/s41531-018-0046-4 – ident: ref56 doi: 10.1002/ana.26085 – ident: ref15 doi: 10.1016/S1474-4422(20)30115-0 – ident: ref39 doi: 10.1017/CBO9780511801389 – ident: ref10 doi: 10.1212/WNL.0000000000002350 – ident: ref34 doi: 10.1121/1.1908630 – volume-title: Recent Development in Parkinsons Disease year: 1987 ident: ref8 article-title: Unified Parkinsons disease rating scale – ident: ref23 doi: 10.1109/STSIVA.2014.7010173 – ident: ref18 doi: 10.1109/TBME.2012.2183367 – start-page: 1 volume-title: Proc. Speech Commun.; 12. ITG Symp. year: 2016 ident: ref54 article-title: Gender-dependent gmm-ubm for tracking Parkinsons disease progression from speech – ident: ref44 doi: 10.1145/1273496.1273510 – volume: 270 start-page: 1 volume-title: Proc. Int. Symp. Music Inf. Retrieval year: 2000 ident: ref33 article-title: Mel frequency cepstral coefficients for music modeling – volume-title: Proc. Fortschritte der Akustik - DAGA 2018 year: 2022 ident: ref32 article-title: I-PROGNOSIS: Verwendung von Sprachmerkmalen als Biomarker zur Detektion der Parkinson-Erkrankung – ident: ref7 doi: 10.1016/S1474-4422(14)70287-X – ident: ref35 doi: 10.1109/JSTSP.2007.910971 – ident: ref26 doi: 10.1109/ACCESS.2021.3057715 – ident: ref37 doi: 10.1007/BF00116251 – volume-title: Intermediate Economic Statistics year: 1968 ident: ref49 – ident: ref16 doi: 10.2217/nmt-2019-0037 – ident: ref9 doi: 10.1002/mds.22340 – ident: ref20 doi: 10.1016/j.bandl.2016.11.005 – ident: ref47 doi: 10.1007/s10994-013-5429-5 – volume: 15 start-page: 577 volume-title: Proc. Neural Inf. Process. Syst. year: 2003 ident: ref45 article-title: Support vector machines for multiple-instance learning – ident: ref55 doi: 10.1109/JBHI.2018.2866873 – ident: ref51 doi: 10.1016/j.csl.2019.101047 – ident: ref25 doi: 10.1109/TNSRE.2018.2851787 – start-page: 176 volume-title: Proc. 19th Int. Conf. Mach. Learn. year: 2002 ident: ref43 article-title: Multi-instance kernels – ident: ref36 doi: 10.1145/1015330.1015435 – ident: ref52 doi: 10.1007/978-3-319-10816-2_45 – ident: ref53 doi: 10.1016/j.bbe.2013.10.003 – start-page: 570 volume-title: Proc. Neural Inf. Process. Syst. year: 1998 ident: ref42 article-title: A framework for multiple-instance learning – ident: ref14 doi: 10.1109/JBHI.2019.2961748 – ident: ref21 doi: 10.1007/s00702-017-1676-0 – ident: ref40 doi: 10.1093/biomet/54.1-2.167 – ident: ref50 doi: 10.1214/aoms/1177730491 – ident: ref6 doi: 10.1136/jnnp.73.5.529 – volume: 12 start-page: 2825 year: 2011 ident: ref46 article-title: Scikit-learn: Machine learning in python publication-title: Mach. Learn. Res. – ident: ref28 doi: 10.1007/978-3-319-57959-7 – ident: ref19 doi: 10.1016/j.cmpb.2015.12.011 – ident: ref31 doi: 10.1121/1.5100272 – volume: 30 start-page: 1 year: 2017 ident: ref48 article-title: Feature selection using lasso – ident: ref12 doi: 10.1038/sdata.2016.11 – ident: ref1 doi: 10.1016/j.euroneuro.2005.04.007 – ident: ref4 doi: 10.1093/hmg/ddm159 – ident: ref17 doi: 10.1098/rsif.2010.0456 – ident: ref13 doi: 10.3389/fict.2018.00028 – ident: ref38 doi: 10.1016/0169-7439(89)80095-4 – ident: ref30 doi: 10.1093/brain/awz111 – volume: 157 start-page: 1015 issue: 11 year: 2003 ident: ref2 article-title: Incidence of Parkinsons disease: Variation by age, gender, and race/ethnicity publication-title: Amer. J. Epidemiol. – ident: ref3 doi: 10.1038/nrneurol.2015.249 – ident: ref58 doi: 10.1016/0004-3702(94)00094-8 – ident: ref5 doi: 10.1136/jnnp.2007.131045 – ident: ref41 doi: 10.1177/154405910408300516 – ident: ref27 doi: 10.1080/136828200410654 – ident: ref29 doi: 10.1016/j.bandc.2004.05.002 – ident: ref22 doi: 10.1155/1999/327643 – ident: ref57 doi: 10.1109/TNNLS.2013.2292894 |
| SSID | ssj0014846 |
| Score | 2.5379772 |
| Snippet | Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early... Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and... Objective: Parkinson’s Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early... |
| SourceID | unpaywall proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1573 |
| SubjectTerms | Biological system modeling Classification Diagnosis digital biomarkers Disease detection Diseases Early Diagnosis Feature extraction Hospitals Humans Language Machine learning Movement disorders Neurodegenerative diseases Parkinson Disease - diagnosis Parkinson's disease Patients Privacy ROC Curve Running Signs and symptoms Speaking Speech speech processing Speech recognition Telephone calls Testing Training voice impairment |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGHoA98LExKGwoSEhIQG9tmnbN47bbaQIdQrBJe6uS1NUkjt5p1wrBX4-d9qp9CfHWpkmbxHbiXx3bAG_L2EqrchtilaehKpMoNC4j4IqatsM8tdqxo_D0S3Zypj6dp-dr8HHwhUFEf_gMR3zpbfnl3LX8q2xPp6R8JLTg3tvPs85Xa7AYqLxzyoliEmCpVW_BjCO9d3o4PSYkKGMCqBx7hLPVJCrVWZrE17Yjn1_lLlVzAx609cL8_mVmsyvbz-QxTFcd706d_Bi1jR25PzdiOv7vyJ7Ao14PFQcd4zyFNaw3YeNKdMJNuD_t7e5b8Jmdo72f2LulGHc2HTHGxp_jqsUh3ZaCLr61PgOS-L5AdBdibBojJpfzn-LrxbxGcUQDWz6Ds8nx6dFJ2KdhCB0pT01odcYxE0lwTVk5g2grwnSEtCQawjsZFVUpZ1YgbaqKbWSQCrWVSVLm3iy7Des1feQFCBWXsrJx7qTTqtIuZ0iKmFSGAL5zMoBoRY3C9THKOVXGrPBYJdIF07JgWhY9LQN4PzRZdAE6_lV5i-d-qNhPewA7K5IXvQgvC0nswSl89nUAb4bHJHxsUTE1zluqw-sdR2xUATzvWGV494rDAvgw8M6tHjbU5FoPX97dw1fwULLfhT9puQPrzWWLu6QNNfa1F4O_AOEAUw priority: 102 providerName: IEEE |
| Title | Parkinson's Disease Detection Based on Running Speech Data From Phone Calls |
| URI | https://ieeexplore.ieee.org/document/9556632 https://www.ncbi.nlm.nih.gov/pubmed/34596531 https://www.proquest.com/docview/2653372079 https://www.proquest.com/docview/2578777904 https://ieeexplore.ieee.org/ielx7/10/9761805/09556632.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVgJ6KNDyCJTKSJxA2U2cR-Nj2-2qQtqqgq5UuES246iIJbvqJuJx6t_o3-OXdMbxRltASHBzEiex428y82k8MwCvilBxFWfKN2WW-HERBb7UKRJXI1AdZokSmgKFx8fp0SR-e5acrZT6ogondvOZ6VPT-vI_mek3ChAfoOoMsyAZUNo01JRICYvyNqylCZrhPVibHJ_sfWj_vCjE3BZBRHWJSECgOY9mGIhBjYoGmSEPkbBSLpLkhk6yRVb-ZG-uw92mmsvvX-V0uqKDRvfh43L07daTz_2mVn3945fEjv81vQew4SxTttdC6SHcMtUmrK_kK9yEO2Pnid-CMYVL28ixn5dXCzZs_TxsaGq7t6ti-3hYMGy8a2xVJPZ-bow-Z0NZSza6mH1hJ-ezyrADnOfiEUxGh6cHR74rzeBrNKhqX4mU8iiiMMui1NIYVSLPQ_bFjUQOlOKpMqFqC2hhlaEKpMGTQvEoKjLrqn0MvQpf8hRYHBa8VGGmuRZxKXRGNNWYqJRI-rXmHgTLxcm1y1tO5TOmueUvgchP98eHOa1n7tbTg9fdLfM2acffOm_RUnQd3cf3YHuJgNyJ9SLnKVrHuzzYFR687C6jQJKXRVZm1mAf-gdSFsfYgyctcrpnRzFCFcHowZsOSr-NkOB5Y4TP_qn3c7jHKUTDbsrchl590ZgXaDjVasdGN-44QbkGgE8O-g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3hT9UwEL8QTAQ-oALKFLEmJibKHlvXzfWj8Hh5CiNGHwnflra7hcTn3gtvi9G_3mu3t4AS4reta7e2d9feb9e7A3hThJprkWofyzT2RREFvjIJAVeUtB2msZbGOgpn58n4Qny-jC9X4KD3hUFEd_gMB_bS2fKLmWnsr7JDGZPyEdGC-yAWQsStt1ZvMxBp65YThCTCXIrOhhkG8nBylJ0QFuQhQVQbfcTmq4lELJM4Cm9tSC7Dyl3K5gasNdVc_fqpptMbG9DoEWTLrrfnTr4PmloPzO-_ojr-79gew2anibKPLes8gRWstmDjRnzCLXiYdZb3bTi17tHOU-ztgg1bqw4bYu1OclXsiG4LRhdfG5cDiX2bI5orNlS1YqPr2Q_25WpWITumgS124GJ0Mjke-10iBt-Q-lT7WiY2aiKJripKoxB1SaiOsBZHRYgnoaIytrkVSJ8qQx0opEKpeRQVqTPMPoXVij6yC0yEBS91mBpupCilSS0oRYxKRRDfGO5BsKRGbroo5TZZxjR3aCWQuaVlbmmZd7T04F3fZN6G6Liv8rad-75iN-0e7C1JnndCvMg5sYdN4vNBevC6f0ziZ20qqsJZQ3XsimdjNgoPnrWs0r97yWEevO95558e1tTkVg-f393DV7A2nmRn-dmn89MXsM6tF4Y7d7kHq_V1gy9JN6r1vhOJP5LIA6A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB7BVgJ64KctECjISJxA2U2cnybHtttVhbRVBV2pcIlsx1YRS3bVTQT01Nfo6_VJmHG80RYQEtycxEns-JvMfBrPDMDrMpRcxpn0tckSPy6jwBcqReKqc1SHWSJzRYHC46P0cBK_O01OV0p9UYUTu_lM96lpffmf9fQ7BYgPUHWGWZAMKG0aakqkhKW5DWtpgmZ4D9YmR8e7H9s_Lwoxt0UQUV0iEhBozqMZBvmgRkWDzJCHSFgpF0lyQyfZIit_sjfX4W5TzcWPb2I6XdFBowfwaTn6duvJl35Ty766-CWx439N7yHcd5Yp222h9Ahu6WoD1lfyFW7AnbHzxG_CmMKlbeTY9eXVgg1bPw8b6tru7arYHh6WDBvvG1sViX2Ya63O2FDUgo3OZ1_Z8dms0mwf57nYgsno4GT_0HelGXyFBlXtyzylPIoozKI0SmgtDfI8ZF9cC-RAKZ4yCVVbQAvLhDIQGk_mkkdRmVlX7WPoVfiSp8DisORGhpniKo9NrjKiqVpHRiDpV4p7ECwXp1AubzmVz5gWlr8EeXGyNz4oaD0Lt54evOlumbdJO_7WeZOWouvoPr4H20sEFE6sFwVP0Tre4cFO7sGr7jIKJHlZRKVnDfahfyBlcYw9eNIip3t2FCNUEYwevO2g9NsICZ43Rvjsn3o_h3ucQjTspsxt6NXnjX6BhlMtXzoR-QksBA35 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+Disease+Detection+Based+on+Running+Speech+Data+From+Phone+Calls&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Laganas%2C+Christos&rft.au=Iakovakis%2C+Dimitrios&rft.au=Hadjidimitriou%2C+Stelios&rft.au=Charisis%2C+Vasileios&rft.date=2022-05-01&rft.eissn=1558-2531&rft.volume=69&rft.issue=5&rft.spage=1573&rft_id=info:doi/10.1109%2FTBME.2021.3116935&rft_id=info%3Apmid%2F34596531&rft.externalDocID=34596531 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |