Parkinson's Disease Detection Based on Running Speech Data From Phone Calls

Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 69; no. 5; pp. 1573 - 1584
Main Authors Laganas, Christos, Iakovakis, Dimitrios, Hadjidimitriou, Stelios, Charisis, Vasileios, Dias, Sofia B., Bostantzopoulou, Sevasti, Katsarou, Zoe, Klingelhoefer, Lisa, Reichmann, Heinz, Trivedi, Dhaval, Chaudhuri, K. Ray, Hadjileontiadis, Leontios J.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2021.3116935

Cover

Abstract Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis. Methods: A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients). Results: By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively. Conclusions: The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data. Significance: This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls.
AbstractList Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis. Methods: A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients). Results: By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively. Conclusions: The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data. Significance: This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls.
Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis. A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients). By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively. The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data. This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls.
Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis.OBJECTIVEParkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis.A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients).METHODSA privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients).By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively.RESULTSBy means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively.The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data.CONCLUSIONSThe proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data.This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls.SIGNIFICANCEThis paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls.
Author Laganas, Christos
Klingelhoefer, Lisa
Hadjileontiadis, Leontios J.
Bostantzopoulou, Sevasti
Iakovakis, Dimitrios
Charisis, Vasileios
Chaudhuri, K. Ray
Hadjidimitriou, Stelios
Katsarou, Zoe
Dias, Sofia B.
Reichmann, Heinz
Trivedi, Dhaval
Author_xml – sequence: 1
  givenname: Christos
  orcidid: 0000-0002-4308-4377
  surname: Laganas
  fullname: Laganas, Christos
  organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece
– sequence: 2
  givenname: Dimitrios
  orcidid: 0000-0002-6854-5942
  surname: Iakovakis
  fullname: Iakovakis, Dimitrios
  organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece
– sequence: 3
  givenname: Stelios
  orcidid: 0000-0002-3676-6556
  surname: Hadjidimitriou
  fullname: Hadjidimitriou, Stelios
  organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece
– sequence: 4
  givenname: Vasileios
  orcidid: 0000-0001-8007-2343
  surname: Charisis
  fullname: Charisis, Vasileios
  organization: Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece
– sequence: 5
  givenname: Sofia B.
  surname: Dias
  fullname: Dias, Sofia B.
  organization: CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal
– sequence: 6
  givenname: Sevasti
  surname: Bostantzopoulou
  fullname: Bostantzopoulou, Sevasti
  organization: 3rd Department of Neurology, G. Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, Greece
– sequence: 7
  givenname: Zoe
  surname: Katsarou
  fullname: Katsarou, Zoe
  organization: Department of Neurology, Hippokration Hospital, Greece
– sequence: 8
  givenname: Lisa
  surname: Klingelhoefer
  fullname: Klingelhoefer, Lisa
  organization: Department of Neurology, Technical University of Dresden, Germany
– sequence: 9
  givenname: Heinz
  surname: Reichmann
  fullname: Reichmann, Heinz
  organization: Department of Neurology, Technical University of Dresden, Germany
– sequence: 10
  givenname: Dhaval
  orcidid: 0000-0003-2319-8024
  surname: Trivedi
  fullname: Trivedi, Dhaval
  organization: King's College Hospital NHS Foundation Trust, U.K
– sequence: 11
  givenname: K. Ray
  surname: Chaudhuri
  fullname: Chaudhuri, K. Ray
  organization: King's College Hospital NHS Foundation Trust, U.K
– sequence: 12
  givenname: Leontios J.
  orcidid: 0000-0002-9932-9302
  surname: Hadjileontiadis
  fullname: Hadjileontiadis, Leontios J.
  email: leontios@auth.gr
  organization: Department of Biomedical Engineering/Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, UAE
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34596531$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PGzEQxa2KqoTQD1BVqixxgMum_ru2jyUhUJUKBPRseTezYLrxpvauEN8eRwkcgtSTPaPf8zy_OUB7oQuA0BdKJpQS8_3u9PfZhBFGJ5zS0nD5AY2olLpgktM9NCKE6sIwI_bRQUqPuRRalJ_QPhfSlJkZoV_XLv71IXXhOOGZT-AS4Bn0UPe-C_g0lwucLzdDCD7c49sVQP2AZ653eB67Jb5-yJ7w1LVtOkQfG9cm-Lw9x-jP_OxuelFcXp3_nP64LGpuWF9UplScl8oIt2hqB1A1QmimFQMnhS5zq5G1k4RJ0tCKOMhNUzHOF5oIqfkYsc27Q1i556c82q6iX7r4bCmx62RsXy3BrpOx22Sy6GQjWsXu3wCpt0ufamhbF6AbkmVSaaWUISKjRzvoYzfEkL9kWU6NK0aUydS3LTXkYYs3C6_ZZoBugDp2KUVo3rlc72_XpdrR1L5361X00fn2v8qvG6UHgLdJRsqy5Iy_AC3Eozs
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TMM_2022_3216961
crossref_primary_10_1016_j_vrih_2024_08_001
crossref_primary_10_1016_j_artmed_2025_103109
crossref_primary_10_2196_63004
crossref_primary_10_2139_ssrn_4173535
crossref_primary_10_1016_j_artmed_2024_102810
crossref_primary_10_3390_app122211601
crossref_primary_10_1016_j_compbiomed_2022_106517
crossref_primary_10_3390_bioengineering10050531
crossref_primary_10_1055_a_2133_3482
crossref_primary_10_3390_jcm13185573
crossref_primary_10_1007_s11042_023_15302_3
crossref_primary_10_1038_s41598_024_81824_x
crossref_primary_10_1002_mds_29921
crossref_primary_10_2196_46105
crossref_primary_10_1038_s41531_023_00494_0
crossref_primary_10_1016_j_medntd_2023_100266
crossref_primary_10_1007_s12559_024_10254_8
crossref_primary_10_1007_s11042_023_17762_z
crossref_primary_10_1007_s00702_024_02874_z
crossref_primary_10_1038_s41598_023_38782_7
crossref_primary_10_1007_s00702_022_02575_5
crossref_primary_10_1371_journal_pone_0284667
crossref_primary_10_1109_JBHI_2023_3267095
crossref_primary_10_3390_s22124434
crossref_primary_10_1007_s12065_023_00859_7
crossref_primary_10_3233_JIFS_230183
crossref_primary_10_1136_bmjopen_2021_059871
crossref_primary_10_3390_app14177873
Cites_doi 10.21437/interspeech.2015-34
10.1038/s41531-018-0046-4
10.1002/ana.26085
10.1016/S1474-4422(20)30115-0
10.1017/CBO9780511801389
10.1212/WNL.0000000000002350
10.1121/1.1908630
10.1109/STSIVA.2014.7010173
10.1109/TBME.2012.2183367
10.1145/1273496.1273510
10.1016/S1474-4422(14)70287-X
10.1109/JSTSP.2007.910971
10.1109/ACCESS.2021.3057715
10.1007/BF00116251
10.2217/nmt-2019-0037
10.1002/mds.22340
10.1016/j.bandl.2016.11.005
10.1007/s10994-013-5429-5
10.1109/JBHI.2018.2866873
10.1016/j.csl.2019.101047
10.1109/TNSRE.2018.2851787
10.1145/1015330.1015435
10.1007/978-3-319-10816-2_45
10.1016/j.bbe.2013.10.003
10.1109/JBHI.2019.2961748
10.1007/s00702-017-1676-0
10.1093/biomet/54.1-2.167
10.1214/aoms/1177730491
10.1136/jnnp.73.5.529
10.1007/978-3-319-57959-7
10.1016/j.cmpb.2015.12.011
10.1121/1.5100272
10.1038/sdata.2016.11
10.1016/j.euroneuro.2005.04.007
10.1093/hmg/ddm159
10.1098/rsif.2010.0456
10.3389/fict.2018.00028
10.1016/0169-7439(89)80095-4
10.1093/brain/awz111
10.1038/nrneurol.2015.249
10.1016/0004-3702(94)00094-8
10.1136/jnnp.2007.131045
10.1177/154405910408300516
10.1080/136828200410654
10.1016/j.bandc.2004.05.002
10.1155/1999/327643
10.1109/TNNLS.2013.2292894
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
DOI 10.1109/TBME.2021.3116935
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1584
ExternalDocumentID 10.1109/tbme.2021.3116935
34596531
10_1109_TBME_2021_3116935
9556632
Genre orig-research
Journal Article
GrantInformation_xml – fundername: European Union's Horizon 2020 Research and Innovation Programme
  grantid: 690494-i-PROGNOSIS
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c392t-b967336794adfcaeebf4482872ea5486caef5ca50250f1b0ae4869b233d804583
IEDL.DBID UNPAY
ISSN 0018-9294
1558-2531
IngestDate Tue Aug 19 20:17:18 EDT 2025
Sun Sep 28 06:39:03 EDT 2025
Mon Jun 30 08:14:22 EDT 2025
Thu Apr 03 07:09:17 EDT 2025
Wed Oct 01 04:08:53 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Aug 27 02:40:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-b967336794adfcaeebf4482872ea5486caef5ca50250f1b0ae4869b233d804583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8007-2343
0000-0002-9932-9302
0000-0002-4308-4377
0000-0002-6854-5942
0000-0002-3676-6556
0000-0003-2319-8024
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/10/9761805/09556632.pdf
PMID 34596531
PQID 2653372079
PQPubID 85474
PageCount 12
ParticipantIDs pubmed_primary_34596531
ieee_primary_9556632
crossref_primary_10_1109_TBME_2021_3116935
proquest_miscellaneous_2578777904
unpaywall_primary_10_1109_tbme_2021_3116935
crossref_citationtrail_10_1109_TBME_2021_3116935
proquest_journals_2653372079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
Fox (ref49) 1968
Maron (ref42) 1998
Pedregosa (ref46) 2011; 12
ref17
ref16
ref19
ref18
ref51
ref50
ref47
Gartner (ref43) 2002
ref41
ref44
ref7
Stephen (ref2) 2003; 157
Arias-Vergara (ref54) 2016
ref9
ref4
Jaeger (ref32) 2022
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
Andrews (ref45) 2003; 15
ref1
ref39
ref38
Logan (ref33) 2000; 270
Rtsch (ref59) 2000
Fahn (ref8) 1987
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Fonti (ref48) 2017; 30
ref28
ref27
ref29
References_xml – ident: ref24
  doi: 10.21437/interspeech.2015-34
– start-page: 341
  volume-title: Proc. Pacific-Asia Conf. Knowl. Discov. Data Mining
  year: 2000
  ident: ref59
  article-title: Robust ensemble learning for data mining
– ident: ref11
  doi: 10.1038/s41531-018-0046-4
– ident: ref56
  doi: 10.1002/ana.26085
– ident: ref15
  doi: 10.1016/S1474-4422(20)30115-0
– ident: ref39
  doi: 10.1017/CBO9780511801389
– ident: ref10
  doi: 10.1212/WNL.0000000000002350
– ident: ref34
  doi: 10.1121/1.1908630
– volume-title: Recent Development in Parkinsons Disease
  year: 1987
  ident: ref8
  article-title: Unified Parkinsons disease rating scale
– ident: ref23
  doi: 10.1109/STSIVA.2014.7010173
– ident: ref18
  doi: 10.1109/TBME.2012.2183367
– start-page: 1
  volume-title: Proc. Speech Commun.; 12. ITG Symp.
  year: 2016
  ident: ref54
  article-title: Gender-dependent gmm-ubm for tracking Parkinsons disease progression from speech
– ident: ref44
  doi: 10.1145/1273496.1273510
– volume: 270
  start-page: 1
  volume-title: Proc. Int. Symp. Music Inf. Retrieval
  year: 2000
  ident: ref33
  article-title: Mel frequency cepstral coefficients for music modeling
– volume-title: Proc. Fortschritte der Akustik - DAGA 2018
  year: 2022
  ident: ref32
  article-title: I-PROGNOSIS: Verwendung von Sprachmerkmalen als Biomarker zur Detektion der Parkinson-Erkrankung
– ident: ref7
  doi: 10.1016/S1474-4422(14)70287-X
– ident: ref35
  doi: 10.1109/JSTSP.2007.910971
– ident: ref26
  doi: 10.1109/ACCESS.2021.3057715
– ident: ref37
  doi: 10.1007/BF00116251
– volume-title: Intermediate Economic Statistics
  year: 1968
  ident: ref49
– ident: ref16
  doi: 10.2217/nmt-2019-0037
– ident: ref9
  doi: 10.1002/mds.22340
– ident: ref20
  doi: 10.1016/j.bandl.2016.11.005
– ident: ref47
  doi: 10.1007/s10994-013-5429-5
– volume: 15
  start-page: 577
  volume-title: Proc. Neural Inf. Process. Syst.
  year: 2003
  ident: ref45
  article-title: Support vector machines for multiple-instance learning
– ident: ref55
  doi: 10.1109/JBHI.2018.2866873
– ident: ref51
  doi: 10.1016/j.csl.2019.101047
– ident: ref25
  doi: 10.1109/TNSRE.2018.2851787
– start-page: 176
  volume-title: Proc. 19th Int. Conf. Mach. Learn.
  year: 2002
  ident: ref43
  article-title: Multi-instance kernels
– ident: ref36
  doi: 10.1145/1015330.1015435
– ident: ref52
  doi: 10.1007/978-3-319-10816-2_45
– ident: ref53
  doi: 10.1016/j.bbe.2013.10.003
– start-page: 570
  volume-title: Proc. Neural Inf. Process. Syst.
  year: 1998
  ident: ref42
  article-title: A framework for multiple-instance learning
– ident: ref14
  doi: 10.1109/JBHI.2019.2961748
– ident: ref21
  doi: 10.1007/s00702-017-1676-0
– ident: ref40
  doi: 10.1093/biomet/54.1-2.167
– ident: ref50
  doi: 10.1214/aoms/1177730491
– ident: ref6
  doi: 10.1136/jnnp.73.5.529
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref46
  article-title: Scikit-learn: Machine learning in python
  publication-title: Mach. Learn. Res.
– ident: ref28
  doi: 10.1007/978-3-319-57959-7
– ident: ref19
  doi: 10.1016/j.cmpb.2015.12.011
– ident: ref31
  doi: 10.1121/1.5100272
– volume: 30
  start-page: 1
  year: 2017
  ident: ref48
  article-title: Feature selection using lasso
– ident: ref12
  doi: 10.1038/sdata.2016.11
– ident: ref1
  doi: 10.1016/j.euroneuro.2005.04.007
– ident: ref4
  doi: 10.1093/hmg/ddm159
– ident: ref17
  doi: 10.1098/rsif.2010.0456
– ident: ref13
  doi: 10.3389/fict.2018.00028
– ident: ref38
  doi: 10.1016/0169-7439(89)80095-4
– ident: ref30
  doi: 10.1093/brain/awz111
– volume: 157
  start-page: 1015
  issue: 11
  year: 2003
  ident: ref2
  article-title: Incidence of Parkinsons disease: Variation by age, gender, and race/ethnicity
  publication-title: Amer. J. Epidemiol.
– ident: ref3
  doi: 10.1038/nrneurol.2015.249
– ident: ref58
  doi: 10.1016/0004-3702(94)00094-8
– ident: ref5
  doi: 10.1136/jnnp.2007.131045
– ident: ref41
  doi: 10.1177/154405910408300516
– ident: ref27
  doi: 10.1080/136828200410654
– ident: ref29
  doi: 10.1016/j.bandc.2004.05.002
– ident: ref22
  doi: 10.1155/1999/327643
– ident: ref57
  doi: 10.1109/TNNLS.2013.2292894
SSID ssj0014846
Score 2.5379772
Snippet Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early...
Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and...
Objective: Parkinson’s Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1573
SubjectTerms Biological system modeling
Classification
Diagnosis
digital biomarkers
Disease detection
Diseases
Early Diagnosis
Feature extraction
Hospitals
Humans
Language
Machine learning
Movement disorders
Neurodegenerative diseases
Parkinson Disease - diagnosis
Parkinson's disease
Patients
Privacy
ROC Curve
Running
Signs and symptoms
Speaking
Speech
speech processing
Speech recognition
Telephone calls
Testing
Training
voice impairment
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGHoA98LExKGwoSEhIQG9tmnbN47bbaQIdQrBJe6uS1NUkjt5p1wrBX4-d9qp9CfHWpkmbxHbiXx3bAG_L2EqrchtilaehKpMoNC4j4IqatsM8tdqxo_D0S3Zypj6dp-dr8HHwhUFEf_gMR3zpbfnl3LX8q2xPp6R8JLTg3tvPs85Xa7AYqLxzyoliEmCpVW_BjCO9d3o4PSYkKGMCqBx7hLPVJCrVWZrE17Yjn1_lLlVzAx609cL8_mVmsyvbz-QxTFcd706d_Bi1jR25PzdiOv7vyJ7Ao14PFQcd4zyFNaw3YeNKdMJNuD_t7e5b8Jmdo72f2LulGHc2HTHGxp_jqsUh3ZaCLr61PgOS-L5AdBdibBojJpfzn-LrxbxGcUQDWz6Ds8nx6dFJ2KdhCB0pT01odcYxE0lwTVk5g2grwnSEtCQawjsZFVUpZ1YgbaqKbWSQCrWVSVLm3iy7Des1feQFCBWXsrJx7qTTqtIuZ0iKmFSGAL5zMoBoRY3C9THKOVXGrPBYJdIF07JgWhY9LQN4PzRZdAE6_lV5i-d-qNhPewA7K5IXvQgvC0nswSl89nUAb4bHJHxsUTE1zluqw-sdR2xUATzvWGV494rDAvgw8M6tHjbU5FoPX97dw1fwULLfhT9puQPrzWWLu6QNNfa1F4O_AOEAUw
  priority: 102
  providerName: IEEE
Title Parkinson's Disease Detection Based on Running Speech Data From Phone Calls
URI https://ieeexplore.ieee.org/document/9556632
https://www.ncbi.nlm.nih.gov/pubmed/34596531
https://www.proquest.com/docview/2653372079
https://www.proquest.com/docview/2578777904
https://ieeexplore.ieee.org/ielx7/10/9761805/09556632.pdf
UnpaywallVersion publishedVersion
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVgJ6KNDyCJTKSJxA2U2cR-Nj2-2qQtqqgq5UuES246iIJbvqJuJx6t_o3-OXdMbxRltASHBzEiex428y82k8MwCvilBxFWfKN2WW-HERBb7UKRJXI1AdZokSmgKFx8fp0SR-e5acrZT6ogondvOZ6VPT-vI_mek3ChAfoOoMsyAZUNo01JRICYvyNqylCZrhPVibHJ_sfWj_vCjE3BZBRHWJSECgOY9mGIhBjYoGmSEPkbBSLpLkhk6yRVb-ZG-uw92mmsvvX-V0uqKDRvfh43L07daTz_2mVn3945fEjv81vQew4SxTttdC6SHcMtUmrK_kK9yEO2Pnid-CMYVL28ixn5dXCzZs_TxsaGq7t6ti-3hYMGy8a2xVJPZ-bow-Z0NZSza6mH1hJ-ezyrADnOfiEUxGh6cHR74rzeBrNKhqX4mU8iiiMMui1NIYVSLPQ_bFjUQOlOKpMqFqC2hhlaEKpMGTQvEoKjLrqn0MvQpf8hRYHBa8VGGmuRZxKXRGNNWYqJRI-rXmHgTLxcm1y1tO5TOmueUvgchP98eHOa1n7tbTg9fdLfM2acffOm_RUnQd3cf3YHuJgNyJ9SLnKVrHuzzYFR687C6jQJKXRVZm1mAf-gdSFsfYgyctcrpnRzFCFcHowZsOSr-NkOB5Y4TP_qn3c7jHKUTDbsrchl590ZgXaDjVasdGN-44QbkGgE8O-g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3hT9UwEL8QTAQ-oALKFLEmJibKHlvXzfWj8Hh5CiNGHwnflra7hcTn3gtvi9G_3mu3t4AS4reta7e2d9feb9e7A3hThJprkWofyzT2RREFvjIJAVeUtB2msZbGOgpn58n4Qny-jC9X4KD3hUFEd_gMB_bS2fKLmWnsr7JDGZPyEdGC-yAWQsStt1ZvMxBp65YThCTCXIrOhhkG8nBylJ0QFuQhQVQbfcTmq4lELJM4Cm9tSC7Dyl3K5gasNdVc_fqpptMbG9DoEWTLrrfnTr4PmloPzO-_ojr-79gew2anibKPLes8gRWstmDjRnzCLXiYdZb3bTi17tHOU-ztgg1bqw4bYu1OclXsiG4LRhdfG5cDiX2bI5orNlS1YqPr2Q_25WpWITumgS124GJ0Mjke-10iBt-Q-lT7WiY2aiKJripKoxB1SaiOsBZHRYgnoaIytrkVSJ8qQx0opEKpeRQVqTPMPoXVij6yC0yEBS91mBpupCilSS0oRYxKRRDfGO5BsKRGbroo5TZZxjR3aCWQuaVlbmmZd7T04F3fZN6G6Liv8rad-75iN-0e7C1JnndCvMg5sYdN4vNBevC6f0ziZ20qqsJZQ3XsimdjNgoPnrWs0r97yWEevO95558e1tTkVg-f393DV7A2nmRn-dmn89MXsM6tF4Y7d7kHq_V1gy9JN6r1vhOJP5LIA6A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB7BVgJ64KctECjISJxA2U2cnybHtttVhbRVBV2pcIlsx1YRS3bVTQT01Nfo6_VJmHG80RYQEtycxEns-JvMfBrPDMDrMpRcxpn0tckSPy6jwBcqReKqc1SHWSJzRYHC46P0cBK_O01OV0p9UYUTu_lM96lpffmf9fQ7BYgPUHWGWZAMKG0aakqkhKW5DWtpgmZ4D9YmR8e7H9s_Lwoxt0UQUV0iEhBozqMZBvmgRkWDzJCHSFgpF0lyQyfZIit_sjfX4W5TzcWPb2I6XdFBowfwaTn6duvJl35Ty766-CWx439N7yHcd5Yp222h9Ahu6WoD1lfyFW7AnbHzxG_CmMKlbeTY9eXVgg1bPw8b6tru7arYHh6WDBvvG1sViX2Ya63O2FDUgo3OZ1_Z8dms0mwf57nYgsno4GT_0HelGXyFBlXtyzylPIoozKI0SmgtDfI8ZF9cC-RAKZ4yCVVbQAvLhDIQGk_mkkdRmVlX7WPoVfiSp8DisORGhpniKo9NrjKiqVpHRiDpV4p7ECwXp1AubzmVz5gWlr8EeXGyNz4oaD0Lt54evOlumbdJO_7WeZOWouvoPr4H20sEFE6sFwVP0Tre4cFO7sGr7jIKJHlZRKVnDfahfyBlcYw9eNIip3t2FCNUEYwevO2g9NsICZ43Rvjsn3o_h3ucQjTspsxt6NXnjX6BhlMtXzoR-QksBA35
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+Disease+Detection+Based+on+Running+Speech+Data+From+Phone+Calls&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Laganas%2C+Christos&rft.au=Iakovakis%2C+Dimitrios&rft.au=Hadjidimitriou%2C+Stelios&rft.au=Charisis%2C+Vasileios&rft.date=2022-05-01&rft.eissn=1558-2531&rft.volume=69&rft.issue=5&rft.spage=1573&rft_id=info:doi/10.1109%2FTBME.2021.3116935&rft_id=info%3Apmid%2F34596531&rft.externalDocID=34596531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon