Parkinson's Disease Detection Based on Running Speech Data From Phone Calls
Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offe...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 69; no. 5; pp. 1573 - 1584 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2021.3116935 |
Cover
Summary: | Objective: Parkinson's Disease (PD) is a progressive neurodegenerative disorder, manifesting with subtle early signs, which, often hinder timely and early diagnosis and treatment. The development of accessible, technology-based methods for longitudinal PD symptoms tracking in daily living, offers the potential for transforming disease assessment and accelerating diagnosis. Methods: A privacy-aware method for classifying patients and healthy controls (HC), on the grounds of speech impairment present in PD, is proposed. Voice features from running speech signals were extracted from passively-captured recordings over voice calls. Language-aware training of multiple- and single-instance learning classifiers was employed to fuse and predict on voice features and demographic data from a multilingual cohort of 498 subjects (392/106 self-reported HC/PD patients). Results: By means of leave-one-subject-out cross-validation, the best-performing models yielded 0.69/0.68/0.63/0.83 area under the Receiver Operating Characteristic curve (AUC) for the binary classification of PD patient vs. HC in sub-cohorts of English/Greek/German/Portuguese-speaking subjects, respectively. Out-of sample testing of the best performing models was conducted in an additional dataset, generated by 63 clinically-assessed subjects (24/39 HC/early PD patients). Testing has resulted in 0.84/0.93/0.83 AUC for the English/Greek/German-speaking sub-cohorts, respectively. Conclusions: The proposed approach outperforms other methods proposed for language-aware PD detection considering the ecological validity of the voice data. Significance: This paper introduces for the first time a high-frequency, privacy-aware and unobtrusive PD screening tool based on analysis of voice samples captured during routine phone calls. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0018-9294 1558-2531 1558-2531 |
DOI: | 10.1109/TBME.2021.3116935 |