A SHORT NOTE ON ENHANCED DENSITY SETS

We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to ‘some remarks on legendrian rectiable currents’, Manuscripta Math. 113(3) (2004), 397–401) result: ‘If Ω is a set of locally finite perimeter in ℝ2, then there is no function f ∈ C1(ℝ2) such that ∇f(x1, x2) = (x2, 0) at...

Full description

Saved in:
Bibliographic Details
Published inGlasgow mathematical journal Vol. 53; no. 3; pp. 631 - 635
Main Author DELLADIO, SILVANO
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.09.2011
Subjects
Online AccessGet full text
ISSN0017-0895
1469-509X
DOI10.1017/S001708951100022X

Cover

Abstract We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to ‘some remarks on legendrian rectiable currents’, Manuscripta Math. 113(3) (2004), 397–401) result: ‘If Ω is a set of locally finite perimeter in ℝ2, then there is no function f ∈ C1(ℝ2) such that ∇f(x1, x2) = (x2, 0) at a.e. (x1, x2) ∈ Ω’. We also prove that every measurable set can be approximated arbitrarily closely in L1 by subsets that do not contain enhanced density points. Finally, we provide a new proof of a Poincaré-type lemma for locally finite perimeter sets, which was first stated by Delladio (S. Delladio, Functions of class C1 subject to a Legendre condition in an enhanced density set, to appear in Rev. Mat. Iberoamericana).
AbstractList Abstract We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to 'some remarks on legendrian rectiable currents', Manuscripta Math. 113(3) (2004), 397-401) result: 'If Ω is a set of locally finite perimeter in â,,2, then there is no function f C1(â,,2) such that f(x1, x2) = (x2, 0) at a.e. (x1, x2) Ω'. We also prove that every measurable set can be approximated arbitrarily closely in L1 by subsets that do not contain enhanced density points. Finally, we provide a new proof of a Poincaré-type lemma for locally finite perimeter sets, which was first stated by Delladio (S. Delladio, Functions of class C1 subject to a Legendre condition in an enhanced density set, to appear in Rev. Mat. Iberoamericana). [PUBLICATION ABSTRACT]
We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to ‘some remarks on legendrian rectiable currents’, Manuscripta Math. 113 (3) (2004), 397–401) result: ‘ If Ω is a set of locally finite perimeter in ℝ 2 , then there is no function f ∈ C 1 (ℝ 2 ) such that ∇ f ( x 1 , x 2 ) = ( x 2 , 0) at a.e. ( x 1 , x 2 ) ∈ Ω’. We also prove that every measurable set can be approximated arbitrarily closely in L 1 by subsets that do not contain enhanced density points. Finally, we provide a new proof of a Poincaré-type lemma for locally finite perimeter sets, which was first stated by Delladio (S. Delladio, Functions of class C 1 subject to a Legendre condition in an enhanced density set, to appear in Rev. Mat. Iberoamericana ).
We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to 'some remarks on legendrian rectiable currents', Manuscripta Math. 113(3) (2004), 397-401) result: 'If Omega is a set of locally finite perimeter in 2, then there is no function f C1(2) such that f(x1, x2) = (x2, 0) at a.e. (x1, x2) Omega '. We also prove that every measurable set can be approximated arbitrarily closely in L1 by subsets that do not contain enhanced density points. Finally, we provide a new proof of a Poincare-type lemma for locally finite perimeter sets, which was first stated by Delladio (S. Delladio, Functions of class C1 subject to a Legendre condition in an enhanced density set, to appear in Rev. Mat. Iberoamericana).
We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to ‘some remarks on legendrian rectiable currents’, Manuscripta Math. 113(3) (2004), 397–401) result: ‘If Ω is a set of locally finite perimeter in ℝ2, then there is no function f ∈ C1(ℝ2) such that ∇f(x1, x2) = (x2, 0) at a.e. (x1, x2) ∈ Ω’. We also prove that every measurable set can be approximated arbitrarily closely in L1 by subsets that do not contain enhanced density points. Finally, we provide a new proof of a Poincaré-type lemma for locally finite perimeter sets, which was first stated by Delladio (S. Delladio, Functions of class C1 subject to a Legendre condition in an enhanced density set, to appear in Rev. Mat. Iberoamericana).
Author DELLADIO, SILVANO
Author_xml – sequence: 1
  givenname: SILVANO
  surname: DELLADIO
  fullname: DELLADIO, SILVANO
  email: delladio@science.unitn.it
  organization: Department of Mathematics, University of Trento, via Sommarive 14, Povo, 38123 Trento, Italy e-mail: delladio@science.unitn.it
BookMark eNp9kFFLwzAUhYNMcJv-AN-KIPhSvUm6pnkcW3WD0YKtMJ9CmybS0bUz6R7892ZsIEz05V4O53yXwx2hQdu1CqFbDI8YMHvKwE2I-ARjACBkfYGGOAi5PwG-HqDhwfYP_hUaWbtxkjo1RPdTL1ukr7mXpHnspYkXJ4tpMovn3jxOsmX-7mVxnl2jS100Vt2c9hi9Pcf5bOGv0pflbLryJeWk9zkDzgLCNA01YEW0jsqQVIRErKQylJhAwGQUKSBBwVgJXGNacl1VGkeBrOgYPRzv7kz3uVe2F9vaStU0Rau6vRWYBjwgFIcTF707i266vWldOxFxTjijIbgQO4ak6aw1SgtZ90Vfd21viroRGMThe-LX9xyJz8idqbeF-fqXoSem2Jamrj7UT6e_qW-c_nun
CitedBy_id crossref_primary_10_1017_S0017089515000385
crossref_primary_10_1017_S0308210515000396
crossref_primary_10_1007_s00229_019_01167_0
crossref_primary_10_1017_prm_2023_22
crossref_primary_10_1017_prm_2020_85
crossref_primary_10_1007_s00229_013_0612_3
crossref_primary_10_1007_s10476_022_0178_y
crossref_primary_10_1007_s00009_023_02542_8
crossref_primary_10_1007_s43037_022_00192_8
Cites_doi 10.1016/0022-1236(91)90104-D
10.1007/s00229-004-0437-1
10.1093/oso/9780198502456.001.0001
10.1515/9781400877577
10.1007/978-0-8176-4679-0
ContentType Journal Article
Copyright Copyright © Glasgow Mathematical Journal Trust 2011
Copyright_xml – notice: Copyright © Glasgow Mathematical Journal Trust 2011
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1017/S001708951100022X
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-509X
EndPage 635
ExternalDocumentID 2490612781
10_1017_S001708951100022X
Genre Feature
GroupedDBID --Z
-1D
-1F
-2P
-2V
-E.
-~6
-~N
-~X
.DC
09C
09E
0E1
0R~
29I
3V.
4.4
5GY
5VS
6~7
74X
74Y
7~V
88I
8FE
8FG
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABBZL
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABXAU
ABZCX
ABZUI
ACBMC
ACCHT
ACETC
ACGFS
ACGOD
ACIMK
ACIWK
ACMRT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMTW
AENCP
AENEX
AENGE
AETEA
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AI.
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ARZZG
ATUCA
AUXHV
AYIQA
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BGLVJ
BJBOZ
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
FRP
GNUQQ
HCIFZ
HST
HZ~
H~9
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
K6V
K7-
KAFGG
KC5
KCGVB
KFECR
L6V
L98
LHUNA
LW7
M-V
M0N
M2P
M7S
NIKVX
NMFBF
NZEOI
O9-
OHT
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
ROL
RR0
S6U
SAAAG
T9M
UPT
UT1
VH1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZCG
ZDLDU
ZJOSE
ZMEZD
ZY4
ZYDXJ
AAKNA
AATMM
AAYXX
ABGDZ
ABHFL
ABVKB
ABVZP
ABXHF
ACDLN
ACEJA
ACOZI
ACRPL
ADNMO
ADXHL
AEMFK
AFZFC
AGQPQ
AKMAY
AMVHM
ANOYL
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c392t-97097427f36f01e2ff8b62d2287b3c6c12047c88e024a77b09f13b9fddf184cd3
IEDL.DBID BENPR
ISSN 0017-0895
IngestDate Fri Sep 05 04:21:34 EDT 2025
Fri Jul 25 19:49:46 EDT 2025
Tue Jul 01 00:20:53 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Wed Mar 13 05:55:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Primary 28Axx
28A75
Secondary 26A45
49Q15
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-97097427f36f01e2ff8b62d2287b3c6c12047c88e024a77b09f13b9fddf184cd3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/1A5EB2EA01223F8277C439A05FA136CB/S001708951100022Xa.pdf/div-class-title-a-short-note-on-enhanced-density-sets-div.pdf
PQID 899297360
PQPubID 30656
PageCount 5
ParticipantIDs proquest_miscellaneous_1349423165
proquest_journals_899297360
crossref_citationtrail_10_1017_S001708951100022X
crossref_primary_10_1017_S001708951100022X
cambridge_journals_10_1017_S001708951100022X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Glasgow mathematical journal
PublicationTitleAlternate Glasgow Math. J
PublicationYear 2011
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S001708951100022X_ref3
S001708951100022X_ref4
S001708951100022X_ref1
Ambrosio (S001708951100022X_ref2) 2000
S001708951100022X_ref5
S001708951100022X_ref6
References_xml – ident: S001708951100022X_ref1
  doi: 10.1016/0022-1236(91)90104-D
– ident: S001708951100022X_ref4
  doi: 10.1007/s00229-004-0437-1
– volume-title: Functions of bounded variation and free discontinuity problems
  year: 2000
  ident: S001708951100022X_ref2
  doi: 10.1093/oso/9780198502456.001.0001
– ident: S001708951100022X_ref6
  doi: 10.1515/9781400877577
– ident: S001708951100022X_ref3
– ident: S001708951100022X_ref5
  doi: 10.1007/978-0-8176-4679-0
SSID ssj0013089
Score 1.9147342
Snippet We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to ‘some remarks on legendrian rectiable currents’, Manuscripta Math. 113(3) (2004),...
We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to ‘some remarks on legendrian rectiable currents’, Manuscripta Math. 113 (3) (2004),...
Abstract We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to 'some remarks on legendrian rectiable currents', Manuscripta Math. 113(3)...
We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to 'some remarks on legendrian rectiable currents', Manuscripta Math. 113(3) (2004),...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 631
SubjectTerms Approximation
Density
Mathematical analysis
Mathematics
Proving
Title A SHORT NOTE ON ENHANCED DENSITY SETS
URI https://www.cambridge.org/core/product/identifier/S001708951100022X/type/journal_article
https://www.proquest.com/docview/899297360
https://www.proquest.com/docview/1349423165
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT4NAFH7pctGDcY212mCiFyNxOsAAB2OqpaJJqSk0qaeG2U6GVtv-f2daoDYmvRFgyPBmeDvfB3CDlRPCEUlNZTuwaQvfMqlI2yZ3hCSOELZNdR6yH5FwZL-PnXEF-sW_MLqtstCJK0XNp0znyB9UXKBplgh6mn2bmjRKF1cLBo00Z1bgjyuEsSrUsSZVrkH9OYg-hpuyAvL8QjWrQ6coc64wpDWSjDqnMdSUYRv_BVvYNlrbOntliHqHcJB7kEZnveRHUBHZMez3S_jV-Qncdow4HAwTIxokgTGIjCAKNQlN1-gGUfyWfBpxkMSnMOoFyUto5nwIJlNezML0XaS8f-xKi0jUFlhKjxLMsQp6qMUIa2Nku8zzhLK7qetS5Mu2RX3JuVRxHOPWGdSyaSbOwcDIoSllXqpXIyUOlRQ5OkLljBHq-w24L19-ku_q-WTdEeZO_smqAaiQz4Tl2OKa4uJr15C7cshsDayx6-ZmIfTNbMod0YDr8qr6OHTFI83EdKkmrMF3lAdLnIudT2jC3jpXrHvHLqG2-FmKK-VsLGgLql7vtZVvpF_Bwsk_
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH5icGAc0AabKDAwElzQorlO4iSHamI0KAWaIhqk7pTFv06oLbQV4o_b_7bnNgmgSb1xi5LYsp-f_b3nZ38P4JihEaIoLxzEDuZ4OnIdoYumo3xtuK-15wm7D9lNeXLnXQ78wQr8re7C2GOV1Zo4X6jVSNo98h_oF9g0S5z-HD84NmmUDa5WGTSKMrOCas0Zxsp7HVf6-Qk9uEmr08bhPmHsIs7OE6dMMuBINA2mThRQNKlZYFxuaFMzY0LBmWLoSQhXctlk1AtkGGoEsyIIBI1M0xWRUcqgcySVi_V-gDW0OlycVGu_4vTm9iWMQcOoggJ89Kuw6pyz2jLX4DvL2YZAOnhN7vAWJN9ixBz4Lj7BZmmxkrOFin2GFT3cgo1uTfc62YaTM9JPercZSXtZTHopidPEJr1pk3ac9jvZb9KPs_4XuHsX0XyF1eFoqHeAMOqLQsiwsKNfcF8YQX3rESspuYiiBnyvO5-Xs2iSL06gBfl_smoAreSTy5LL3KbUuF9W5LQuMl4QeSz7ea8S-ktrag1swFH9FSejjbAUQz2aYYMt2Q9azNzfXVrDIawnWfc6v-6kV3vwcbFPbc-t7cPq9HGmv6GhMxUHpToR-PPeGvwPRpcEdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+SHORT+NOTE+ON+ENHANCED+DENSITY+SETS&rft.jtitle=Glasgow+mathematical+journal&rft.au=DELLADIO%2C+SILVANO&rft.date=2011-09-01&rft.pub=Cambridge+University+Press&rft.issn=0017-0895&rft.eissn=1469-509X&rft.volume=53&rft.issue=3&rft.spage=631&rft_id=info:doi/10.1017%2FS001708951100022X&rft.externalDocID=2490612781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-0895&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-0895&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-0895&client=summon