A SHORT NOTE ON ENHANCED DENSITY SETS
We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to ‘some remarks on legendrian rectiable currents’, Manuscripta Math. 113(3) (2004), 397–401) result: ‘If Ω is a set of locally finite perimeter in ℝ2, then there is no function f ∈ C1(ℝ2) such that ∇f(x1, x2) = (x2, 0) at...
Saved in:
Published in | Glasgow mathematical journal Vol. 53; no. 3; pp. 631 - 635 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.09.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0017-0895 1469-509X |
DOI | 10.1017/S001708951100022X |
Cover
Summary: | We give a simple proof of a statement extending Fu's (J.H.G. Fu, Erratum to ‘some remarks on legendrian rectiable currents’, Manuscripta Math. 113(3) (2004), 397–401) result: ‘If Ω is a set of locally finite perimeter in ℝ2, then there is no function f ∈ C1(ℝ2) such that ∇f(x1, x2) = (x2, 0) at a.e. (x1, x2) ∈ Ω’. We also prove that every measurable set can be approximated arbitrarily closely in L1 by subsets that do not contain enhanced density points. Finally, we provide a new proof of a Poincaré-type lemma for locally finite perimeter sets, which was first stated by Delladio (S. Delladio, Functions of class C1 subject to a Legendre condition in an enhanced density set, to appear in Rev. Mat. Iberoamericana). |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S001708951100022X |