Targeting of MyD88 Homodimerization by Novel Synthetic Inhibitor TJ-M2010-5 in Preventing Colitis-Associated Colorectal Cancer
The TLR/MyD88 signaling pathway is an important driver of inflammation and cancer and is a possible target for antitumor therapy. We generated a MyD88 inhibitor (TJ-M2010-5), which was designed to bind to the TIR domain of MyD88 to interfere with its homodimerization, and the TLR/MyD88 signal pathwa...
Saved in:
Published in | JNCI : Journal of the National Cancer Institute Vol. 108; no. 4; p. djv364 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8874 1460-2105 1460-2105 |
DOI | 10.1093/jnci/djv364 |
Cover
Summary: | The TLR/MyD88 signaling pathway is an important driver of inflammation and cancer and is a possible target for antitumor therapy.
We generated a MyD88 inhibitor (TJ-M2010-5), which was designed to bind to the TIR domain of MyD88 to interfere with its homodimerization, and the TLR/MyD88 signal pathway. We utilized a mouse model of azoxymethane/dextran sodium sulfate (AOM/DSS)-induced colitis-associated cancer (CAC) in combination with TJ-M2010-5 administration to investigate the anti-inflammation-related cancer effect of MyD88 inhibitor in vivo. Data were analyzed with one-way and repeated measures analysis of variance. Differences in survival between groups were compared using the log rank test. All statistical tests were two-sided.
TJ-M2010-5 inhibited MyD88 homodimerization in transfected HEK293 cells in a concentration-dependent manner and suppressed MyD88 signaling in LPS-responsive RAW 264.7 cells in vitro. In a 10-week CAC mouse model (n = 30 per group), TJ-M2010-5 treatment statistically significantly reduced AOM/DSS-induced colitis and completely prevented CAC development with less related body mass loss, resulted in 0% mortality of treated mice (compared with 53% mortality of control mice), decreased cell proliferation, and increased apoptosis in colon tissue. TJ-M2010-5 treatment also inhibited production of inflammatory cytokines and chemokines (TNF-α, IL-6,G-CSF, MIP-1β, TGF-β1, IL-11, IL-17A, IL-22 and IL-23) and infiltration of immune cells (macrophages, dendritic cells, neutropihls and CD(+)4 T cells) in colon tissues of mice.
Our findings suggest that TLR/MyD88 signaling may be a therapeutic target for CAC intervention and MyD88 inhibitors may be a promising therapeutic modality for treating patients with colitis or CAC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0027-8874 1460-2105 1460-2105 |
DOI: | 10.1093/jnci/djv364 |