Stochastic finite cell method for structural mechanics

Finite cell method is known as a combination of finite element method and fictitious domain approach in order to reduce the difficulties associated with mesh generation so that it can successfully handle complex geometries. This study proposes a stochastic extension of finite cell method, as a novel...

Full description

Saved in:
Bibliographic Details
Published inComputational mechanics Vol. 68; no. 1; pp. 185 - 210
Main Author Zakian, Pooya
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-7675
1432-0924
DOI10.1007/s00466-021-02026-0

Cover

Abstract Finite cell method is known as a combination of finite element method and fictitious domain approach in order to reduce the difficulties associated with mesh generation so that it can successfully handle complex geometries. This study proposes a stochastic extension of finite cell method, as a novel computational framework, for uncertainty quantification of structures. For this purpose, stochastic finite cell method (SFCM) is developed as a new efficient method, including the features of finite cell method, for computational stochastic mechanics considering complicated geometries arising from computer-aided design (CAD). Firstly, finite cell method is formulated for solving the Fredholm integral equation of the second kind used for Karhunen-Loève expansion in order to decompose the random field within a physical domain having arbitrary boundaries. Then, the SFCM is formulated based on Karhunen-Loève and polynomial chaos expansions for the stochastic analysis. Several numerical examples consisting of benchmark problems are provided to demonstrate the efficiency, accuracy and capability of the proposed SFCM.
AbstractList Finite cell method is known as a combination of finite element method and fictitious domain approach in order to reduce the difficulties associated with mesh generation so that it can successfully handle complex geometries. This study proposes a stochastic extension of finite cell method, as a novel computational framework, for uncertainty quantification of structures. For this purpose, stochastic finite cell method (SFCM) is developed as a new efficient method, including the features of finite cell method, for computational stochastic mechanics considering complicated geometries arising from computer-aided design (CAD). Firstly, finite cell method is formulated for solving the Fredholm integral equation of the second kind used for Karhunen-Loève expansion in order to decompose the random field within a physical domain having arbitrary boundaries. Then, the SFCM is formulated based on Karhunen-Loève and polynomial chaos expansions for the stochastic analysis. Several numerical examples consisting of benchmark problems are provided to demonstrate the efficiency, accuracy and capability of the proposed SFCM.
Audience Academic
Author Zakian, Pooya
Author_xml – sequence: 1
  givenname: Pooya
  orcidid: 0000-0002-7252-9531
  surname: Zakian
  fullname: Zakian, Pooya
  email: p-zakian@araku.ac.ir
  organization: Department of Civil Engineering, Faculty of Engineering, Arak University
BookMark eNp9kctKAzEUhoMoWC8v4GrAlYupZ3LvshQvhYJgdR1ikmlTpjM1yYC-vakjSF1ICAmH7zu5_GfouO1ah9BVBeMKQNxGAMp5CbjKE3DeHaFRRQkuYYLpMRpBJWQpuGCn6CzGDUDFJGEjxJepM2sdkzdF7VufXGFc0xRbl9adLeouFDGF3qQ-6H01s6038QKd1LqJ7vJnPUev93cvs8dy8fQwn00XpSETnEpiJNWccmYFxVgyCca9Cc2kALDGWMsw57q22NqJrAihWHIJ2BFXG2YYkHN0PfTdhe69dzGpTdeHNh-pMKNMTJiULFPjgVrpxinf1l0K2uRh3dab_FO1z_Up51xQwHQv3BwImUnuI610H6OaL58PWTmwJnQxBlcr45NOPitB-0ZVoPYRqCEClSNQ3xGo_e3xH3UX_FaHz_8lMkgxw-3Khd8n_2N9AYKXmEc
CitedBy_id crossref_primary_10_1007_s00466_022_02259_7
crossref_primary_10_1002_nme_7317
crossref_primary_10_1016_j_istruc_2021_10_090
crossref_primary_10_1016_j_istruc_2023_105187
crossref_primary_10_1016_j_istruc_2021_07_070
crossref_primary_10_1007_s00466_024_02512_1
crossref_primary_10_1007_s00707_023_03749_2
crossref_primary_10_1109_TIM_2022_3150863
crossref_primary_10_1002_adem_202402949
crossref_primary_10_1007_s11709_022_0802_8
Cites_doi 10.1002/9781118481844
10.1061/(ASCE)0733-9399(1989)115:5(1035)
10.1007/s11012-015-0242-9
10.1002/9780470033326
10.1007/978-3-7091-1565-7
10.1002/9781118443378
10.1080/15376494.2016.1202359
10.1243/09544119jeim739
10.1007/s11831-014-9139-3
10.1016/j.apm.2018.06.027
10.1046/j.1365-246x.1999.00967.x
10.1016/j.probengmech.2006.11.004
10.1016/j.finel.2012.10.001
10.1007/s00466-019-01692-5
10.1016/j.cma.2019.03.008
10.1061/AJRUA6.0001040
10.1007/s00466-007-0173-y
10.2307/j.ctv7h0skv
10.1016/j.compstruc.2017.03.008
10.1007/978-90-481-3520-2
10.1016/j.cma.2008.11.007
10.1016/j.compstruc.2016.10.009
10.1016/j.cma.2004.10.008
10.1016/j.cma.2017.12.012
10.1023/A:1006514109327
10.1016/j.cam.2013.08.016
10.1016/S0045-7825(96)01078-X
10.1002/nme.3289
10.1002/(sici)1097-0207(19990730)45:9<1139::aid-nme617>3.0.co;2-t
10.1016/j.jcp.2016.02.014
10.1002/nme.165
10.1016/j.compstruc.2019.05.012
10.1007/s10237-011-0322-2
10.1002/nme.4663
10.1007/s00466-014-1019-z
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00466-021-02026-0
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central
ProQuest Central (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1432-0924
EndPage 210
ExternalDocumentID A666740245
10_1007_s00466_021_02026_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E.L
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
XH6
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c392t-3c84a6465d74228580ceb7a58700dccdd5266afd2dd981334286802e3efc5c503
IEDL.DBID U2A
ISSN 0178-7675
IngestDate Fri Jul 25 11:04:31 EDT 2025
Mon Oct 20 16:49:21 EDT 2025
Thu Oct 16 14:35:56 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Wed Oct 01 04:31:34 EDT 2025
Fri Feb 21 02:47:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Karhunen-Loève expansion
Finite cell method
Polynomial chaos expansion
Fredholm integral equation
Stochastic finite cell method
Computational stochastic mechanics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-3c84a6465d74228580ceb7a58700dccdd5266afd2dd981334286802e3efc5c503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7252-9531
PQID 2545795885
PQPubID 2043755
PageCount 26
ParticipantIDs proquest_journals_2545795885
gale_infotracacademiconefile_A666740245
gale_incontextgauss_ISR_A666740245
crossref_citationtrail_10_1007_s00466_021_02026_0
crossref_primary_10_1007_s00466_021_02026_0
springer_journals_10_1007_s00466_021_02026_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Solids, Materials, Complex Fluids, Fluid-Structure-Interaction, Biological Systems, Micromechanics, Multiscale Mechanics, Additive Manufacturing
PublicationTitle Computational mechanics
PublicationTitleAbbrev Comput Mech
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References MaitreOLKnioOMSpectral methods for uncertainty quantification: with applications to computational fluid dynamics2010NetherlandsSpringer10.1007/978-90-481-3520-2
JoulaianMDuczekSGabbertUDüsterAFinite and spectral cell method for wave propagation in heterogeneous materialsComput Mech201454661675324691210.1007/s00466-014-1019-z1311.74056
Liu GR (2009) Mesh free methods: moving beyond the finite element method. 2nd Edition, CRC Press, Boca Raton
LazPJBrowneMA review of probabilistic analysis in orthopaedic biomechanicsProc Inst Mech Eng [H]201022492794310.1243/09544119jeim739
DuczekSJoulaianMDüsterAGabbertUNumerical analysis of Lamb waves using the finite and spectral cell methodsInt J Numer Meth Eng2014992653322644510.1002/nme.46631352.74144
Ghanem RG, Spanos PD (2003) Stochastic Finite elements: a spectral approach. Courier Dover Publications, Mineola
KhajiNZakianPUncertainty analysis of elastostatic problems incorporating a new hybrid stochastic-spectral finite element methodMech Adv Mater Struct2017241030104210.1080/15376494.2016.1202359
MishraSSchwabCŠukysJMulti-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered mediumJ Comput Phys2016312192217347117510.1016/j.jcp.2016.02.0141351.76117
ZhangLBatheKJOverlapping finite elements for a new paradigm of solutionComput Struct2017187647610.1016/j.compstruc.2017.03.008
Bathe KJ (1996) Finite element procedures, 1st edn. Prentice Hall; 2nd ed KJ Bathe, Watertown, MA, 2014
ZakianPKhajiNA novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domainMeccanica201651893920347671710.1007/s11012-015-0242-91338.74110
ShangSYunGJStochastic finite element with material uncertainties: implementation in a general purpose simulation programFinite Elem Anal Des2013646578300239410.1016/j.finel.2012.10.0011282.76125
KavehAOptimal structural analysis20062ChichesterWiley1138.74002
SchillingerDDüsterARankEThe hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanicsInt J Numer Meth Eng20128911711202289690310.1002/nme.32891242.74161
Arregui-MenaJDMargettsLMummeryPMPractical application of the stochastic finite element methodArchives Comput Methods Eng201623171190344951510.1007/s11831-014-9139-31348.65160
ZakianPKhajiNA stochastic spectral finite element method for wave propagation analyses with medium uncertaintiesAppl Math Model20186384108384428410.1016/j.apm.2018.06.02707182990
OliveiraSPAzevedoJSSpectral element approximation of Fredholm integral eigenvalue problemsJ Comput Appl Math20142574656310740510.1016/j.cam.2013.08.0161294.65115
LiKGaoWWuDSongCChenTSpectral stochastic isogeometric analysis of linear elasticityComput Methods Appl Mech Eng2018332157190376442310.1016/j.cma.2017.12.0121439.74441
MohammadiSXFEM fracture analysis of composites2012HobokenWiley10.1002/9781118443378
StefanouGThe stochastic finite element method: past, present and futureComput Methods Appl Mech Eng20091981031105110.1016/j.cma.2008.11.0071229.74140
PokusińskiBKamińskiMLattice domes reliability by the perturbation-based approaches vs. semi-analytical methodComput Struct201922117919210.1016/j.compstruc.2019.05.012
KaminskiMThe stochastic perturbation method for computational mechanics2013HobokenWiley10.1002/9781118481844
ParvizianJDüsterARankEFinite cell methodComput Mech200741121133237780210.1007/s00466-007-0173-y1162.74506
KomatitschDTrompJIntroduction to the spectral element method for three-dimensional seismic wave propagationGeophys J Int199913980682210.1046/j.1365-246x.1999.00967.x
HughesTJRCottrellJABazilevsYIsogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinementComput Methods Appl Mech Eng200519441354195215238210.1016/j.cma.2004.10.0081151.74419
SzafranJJuszczykKKamińskiMReliability assessment of steel lattice tower subjected to random wind load by the stochastic finite-element methodASCE-ASME J Risk Uncertain Eng Syst Part A: Civil Eng202060402000310.1061/AJRUA6.0001040
KavehAOptimal analysis of structures by concepts of symmetry and regularity2013ViennaSpringer10.1007/978-3-7091-1565-7
SpanosPDGhanemRStochastic finite element expansion for random mediaJ Eng Mech19891151035105310.1061/(ASCE)0733-9399(1989)115:5(1035)
GhanemRDhamSStochastic finite element analysis for multiphase flow in heterogeneous porous mediaTransp Porous Media199832239262177649510.1023/A:1006514109327
BelytschkoTKrongauzYOrganDFlemingMKryslPMeshless methods: an overview and recent developmentsComput Methods Appl Mech Eng199613934710.1016/S0045-7825(96)01078-X0891.73075
AndersMHoriMThree-dimensional stochastic finite element method for elasto-plastic bodiesInt J Numer Meth Eng200151449478183031810.1002/nme.1651015.74055
RuessMTalDTrabelsiNYosibashZRankEThe finite cell method for bone simulations: verification and validationBiomech Model Mechanobiol20121142543710.1007/s10237-011-0322-2
LiKWuDGaoWSongCSpectral stochastic isogeometric analysis of free vibrationComput Methods Appl Mech Eng2019350127392502910.1016/j.cma.2019.03.0081441.74258
ZakianPKhajiNA stochastic spectral finite element method for solution of faulting-induced wave propagation in materially random continua without explicitly modeled discontinuitiesComput Mech20196410171048400367810.1007/s00466-019-01692-507119150
KomatitschDVilotteJ-PVaiRCastillo-CovarrubiasJMSánchez-SesmaFJThe spectral element method for elastic wave equations—application to 2-D and 3-D seismic problemsInt J Numer Meth Eng1999451139116410.1002/(sici)1097-0207(19990730)45:9<1139::aid-nme617>3.0.co;2-t0947.74074
KavehAComputational structural analysis and finite element methods2013SwitzerlandSpringer1282.65002
Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, New Jersey
ZakianPKhajiNKavehAGraph theoretical methods for efficient stochastic finite element analysis of structuresComput Struct2017178294610.1016/j.compstruc.2016.10.009
HuangSMahadevanSRebbaRCollocation-based stochastic finite element analysis for random field problemsProbab Eng Mech20072219420510.1016/j.probengmech.2006.11.004
A Kaveh (2026_CR21) 2013
2026_CR25
P Zakian (2026_CR19) 2017; 178
OL Maitre (2026_CR13) 2010
A Kaveh (2026_CR22) 2006
2026_CR20
S Huang (2026_CR39) 2007; 22
D Komatitsch (2026_CR17) 1999; 139
K Li (2026_CR34) 2019; 350
S Duczek (2026_CR31) 2014; 99
N Khaji (2026_CR9) 2017; 24
J Szafran (2026_CR11) 2020; 6
M Kaminski (2026_CR3) 2013
M Anders (2026_CR4) 2001; 51
P Zakian (2026_CR6) 2018; 63
S Mishra (2026_CR5) 2016; 312
T Belytschko (2026_CR24) 1996; 139
PJ Laz (2026_CR14) 2010; 224
D Schillinger (2026_CR30) 2012; 89
D Komatitsch (2026_CR18) 1999; 45
G Stefanou (2026_CR2) 2009; 198
S Shang (2026_CR8) 2013; 64
J Parvizian (2026_CR27) 2007; 41
L Zhang (2026_CR28) 2017; 187
TJR Hughes (2026_CR26) 2005; 194
PD Spanos (2026_CR36) 1989; 115
JD Arregui-Mena (2026_CR15) 2016; 23
P Zakian (2026_CR7) 2019; 64
R Ghanem (2026_CR12) 1998; 32
M Joulaian (2026_CR32) 2014; 54
K Li (2026_CR33) 2018; 332
S Mohammadi (2026_CR35) 2012
SP Oliveira (2026_CR37) 2014; 257
B Pokusiński (2026_CR10) 2019; 221
M Ruess (2026_CR29) 2012; 11
2026_CR1
P Zakian (2026_CR16) 2016; 51
A Kaveh (2026_CR23) 2013
2026_CR38
References_xml – reference: MishraSSchwabCŠukysJMulti-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered mediumJ Comput Phys2016312192217347117510.1016/j.jcp.2016.02.0141351.76117
– reference: SchillingerDDüsterARankEThe hp-d-adaptive finite cell method for geometrically nonlinear problems of solid mechanicsInt J Numer Meth Eng20128911711202289690310.1002/nme.32891242.74161
– reference: Liu GR (2009) Mesh free methods: moving beyond the finite element method. 2nd Edition, CRC Press, Boca Raton
– reference: ZakianPKhajiNA stochastic spectral finite element method for wave propagation analyses with medium uncertaintiesAppl Math Model20186384108384428410.1016/j.apm.2018.06.02707182990
– reference: MaitreOLKnioOMSpectral methods for uncertainty quantification: with applications to computational fluid dynamics2010NetherlandsSpringer10.1007/978-90-481-3520-2
– reference: JoulaianMDuczekSGabbertUDüsterAFinite and spectral cell method for wave propagation in heterogeneous materialsComput Mech201454661675324691210.1007/s00466-014-1019-z1311.74056
– reference: KaminskiMThe stochastic perturbation method for computational mechanics2013HobokenWiley10.1002/9781118481844
– reference: KomatitschDTrompJIntroduction to the spectral element method for three-dimensional seismic wave propagationGeophys J Int199913980682210.1046/j.1365-246x.1999.00967.x
– reference: KavehAOptimal structural analysis20062ChichesterWiley1138.74002
– reference: GhanemRDhamSStochastic finite element analysis for multiphase flow in heterogeneous porous mediaTransp Porous Media199832239262177649510.1023/A:1006514109327
– reference: LiKWuDGaoWSongCSpectral stochastic isogeometric analysis of free vibrationComput Methods Appl Mech Eng2019350127392502910.1016/j.cma.2019.03.0081441.74258
– reference: LazPJBrowneMA review of probabilistic analysis in orthopaedic biomechanicsProc Inst Mech Eng [H]201022492794310.1243/09544119jeim739
– reference: HughesTJRCottrellJABazilevsYIsogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinementComput Methods Appl Mech Eng200519441354195215238210.1016/j.cma.2004.10.0081151.74419
– reference: MohammadiSXFEM fracture analysis of composites2012HobokenWiley10.1002/9781118443378
– reference: SpanosPDGhanemRStochastic finite element expansion for random mediaJ Eng Mech19891151035105310.1061/(ASCE)0733-9399(1989)115:5(1035)
– reference: SzafranJJuszczykKKamińskiMReliability assessment of steel lattice tower subjected to random wind load by the stochastic finite-element methodASCE-ASME J Risk Uncertain Eng Syst Part A: Civil Eng202060402000310.1061/AJRUA6.0001040
– reference: OliveiraSPAzevedoJSSpectral element approximation of Fredholm integral eigenvalue problemsJ Comput Appl Math20142574656310740510.1016/j.cam.2013.08.0161294.65115
– reference: Ghanem RG, Spanos PD (2003) Stochastic Finite elements: a spectral approach. Courier Dover Publications, Mineola
– reference: StefanouGThe stochastic finite element method: past, present and futureComput Methods Appl Mech Eng20091981031105110.1016/j.cma.2008.11.0071229.74140
– reference: KhajiNZakianPUncertainty analysis of elastostatic problems incorporating a new hybrid stochastic-spectral finite element methodMech Adv Mater Struct2017241030104210.1080/15376494.2016.1202359
– reference: AndersMHoriMThree-dimensional stochastic finite element method for elasto-plastic bodiesInt J Numer Meth Eng200151449478183031810.1002/nme.1651015.74055
– reference: ZakianPKhajiNKavehAGraph theoretical methods for efficient stochastic finite element analysis of structuresComput Struct2017178294610.1016/j.compstruc.2016.10.009
– reference: Arregui-MenaJDMargettsLMummeryPMPractical application of the stochastic finite element methodArchives Comput Methods Eng201623171190344951510.1007/s11831-014-9139-31348.65160
– reference: ParvizianJDüsterARankEFinite cell methodComput Mech200741121133237780210.1007/s00466-007-0173-y1162.74506
– reference: RuessMTalDTrabelsiNYosibashZRankEThe finite cell method for bone simulations: verification and validationBiomech Model Mechanobiol20121142543710.1007/s10237-011-0322-2
– reference: Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, New Jersey
– reference: ShangSYunGJStochastic finite element with material uncertainties: implementation in a general purpose simulation programFinite Elem Anal Des2013646578300239410.1016/j.finel.2012.10.0011282.76125
– reference: PokusińskiBKamińskiMLattice domes reliability by the perturbation-based approaches vs. semi-analytical methodComput Struct201922117919210.1016/j.compstruc.2019.05.012
– reference: ZakianPKhajiNA stochastic spectral finite element method for solution of faulting-induced wave propagation in materially random continua without explicitly modeled discontinuitiesComput Mech20196410171048400367810.1007/s00466-019-01692-507119150
– reference: KavehAComputational structural analysis and finite element methods2013SwitzerlandSpringer1282.65002
– reference: HuangSMahadevanSRebbaRCollocation-based stochastic finite element analysis for random field problemsProbab Eng Mech20072219420510.1016/j.probengmech.2006.11.004
– reference: BelytschkoTKrongauzYOrganDFlemingMKryslPMeshless methods: an overview and recent developmentsComput Methods Appl Mech Eng199613934710.1016/S0045-7825(96)01078-X0891.73075
– reference: LiKGaoWWuDSongCChenTSpectral stochastic isogeometric analysis of linear elasticityComput Methods Appl Mech Eng2018332157190376442310.1016/j.cma.2017.12.0121439.74441
– reference: KomatitschDVilotteJ-PVaiRCastillo-CovarrubiasJMSánchez-SesmaFJThe spectral element method for elastic wave equations—application to 2-D and 3-D seismic problemsInt J Numer Meth Eng1999451139116410.1002/(sici)1097-0207(19990730)45:9<1139::aid-nme617>3.0.co;2-t0947.74074
– reference: ZakianPKhajiNA novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domainMeccanica201651893920347671710.1007/s11012-015-0242-91338.74110
– reference: Bathe KJ (1996) Finite element procedures, 1st edn. Prentice Hall; 2nd ed KJ Bathe, Watertown, MA, 2014
– reference: ZhangLBatheKJOverlapping finite elements for a new paradigm of solutionComput Struct2017187647610.1016/j.compstruc.2017.03.008
– reference: DuczekSJoulaianMDüsterAGabbertUNumerical analysis of Lamb waves using the finite and spectral cell methodsInt J Numer Meth Eng2014992653322644510.1002/nme.46631352.74144
– reference: KavehAOptimal analysis of structures by concepts of symmetry and regularity2013ViennaSpringer10.1007/978-3-7091-1565-7
– volume-title: The stochastic perturbation method for computational mechanics
  year: 2013
  ident: 2026_CR3
  doi: 10.1002/9781118481844
– volume: 115
  start-page: 1035
  year: 1989
  ident: 2026_CR36
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1989)115:5(1035)
– volume: 51
  start-page: 893
  year: 2016
  ident: 2026_CR16
  publication-title: Meccanica
  doi: 10.1007/s11012-015-0242-9
– volume-title: Optimal structural analysis
  year: 2006
  ident: 2026_CR22
  doi: 10.1002/9780470033326
– volume-title: Optimal analysis of structures by concepts of symmetry and regularity
  year: 2013
  ident: 2026_CR23
  doi: 10.1007/978-3-7091-1565-7
– volume-title: XFEM fracture analysis of composites
  year: 2012
  ident: 2026_CR35
  doi: 10.1002/9781118443378
– volume: 24
  start-page: 1030
  year: 2017
  ident: 2026_CR9
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2016.1202359
– volume: 224
  start-page: 927
  year: 2010
  ident: 2026_CR14
  publication-title: Proc Inst Mech Eng [H]
  doi: 10.1243/09544119jeim739
– volume: 23
  start-page: 171
  year: 2016
  ident: 2026_CR15
  publication-title: Archives Comput Methods Eng
  doi: 10.1007/s11831-014-9139-3
– volume: 63
  start-page: 84
  year: 2018
  ident: 2026_CR6
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2018.06.027
– volume: 139
  start-page: 806
  year: 1999
  ident: 2026_CR17
  publication-title: Geophys J Int
  doi: 10.1046/j.1365-246x.1999.00967.x
– volume: 22
  start-page: 194
  year: 2007
  ident: 2026_CR39
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2006.11.004
– volume: 64
  start-page: 65
  year: 2013
  ident: 2026_CR8
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2012.10.001
– volume: 64
  start-page: 1017
  year: 2019
  ident: 2026_CR7
  publication-title: Comput Mech
  doi: 10.1007/s00466-019-01692-5
– volume-title: Computational structural analysis and finite element methods
  year: 2013
  ident: 2026_CR21
– ident: 2026_CR1
– ident: 2026_CR20
– volume: 350
  start-page: 1
  year: 2019
  ident: 2026_CR34
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.03.008
– volume: 6
  start-page: 04020003
  year: 2020
  ident: 2026_CR11
  publication-title: ASCE-ASME J Risk Uncertain Eng Syst Part A: Civil Eng
  doi: 10.1061/AJRUA6.0001040
– volume: 41
  start-page: 121
  year: 2007
  ident: 2026_CR27
  publication-title: Comput Mech
  doi: 10.1007/s00466-007-0173-y
– ident: 2026_CR38
  doi: 10.2307/j.ctv7h0skv
– volume: 187
  start-page: 64
  year: 2017
  ident: 2026_CR28
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2017.03.008
– volume-title: Spectral methods for uncertainty quantification: with applications to computational fluid dynamics
  year: 2010
  ident: 2026_CR13
  doi: 10.1007/978-90-481-3520-2
– volume: 198
  start-page: 1031
  year: 2009
  ident: 2026_CR2
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.11.007
– volume: 178
  start-page: 29
  year: 2017
  ident: 2026_CR19
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.10.009
– volume: 194
  start-page: 4135
  year: 2005
  ident: 2026_CR26
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.10.008
– volume: 332
  start-page: 157
  year: 2018
  ident: 2026_CR33
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.12.012
– volume: 32
  start-page: 239
  year: 1998
  ident: 2026_CR12
  publication-title: Transp Porous Media
  doi: 10.1023/A:1006514109327
– volume: 257
  start-page: 46
  year: 2014
  ident: 2026_CR37
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2013.08.016
– volume: 139
  start-page: 3
  year: 1996
  ident: 2026_CR24
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01078-X
– volume: 89
  start-page: 1171
  year: 2012
  ident: 2026_CR30
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.3289
– volume: 45
  start-page: 1139
  year: 1999
  ident: 2026_CR18
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/(sici)1097-0207(19990730)45:9<1139::aid-nme617>3.0.co;2-t
– volume: 312
  start-page: 192
  year: 2016
  ident: 2026_CR5
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.02.014
– volume: 51
  start-page: 449
  year: 2001
  ident: 2026_CR4
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.165
– volume: 221
  start-page: 179
  year: 2019
  ident: 2026_CR10
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.05.012
– ident: 2026_CR25
– volume: 11
  start-page: 425
  year: 2012
  ident: 2026_CR29
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-011-0322-2
– volume: 99
  start-page: 26
  year: 2014
  ident: 2026_CR31
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.4663
– volume: 54
  start-page: 661
  year: 2014
  ident: 2026_CR32
  publication-title: Comput Mech
  doi: 10.1007/s00466-014-1019-z
SSID ssj0015835
Score 2.3720732
Snippet Finite cell method is known as a combination of finite element method and fictitious domain approach in order to reduce the difficulties associated with mesh...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 185
SubjectTerms Accuracy
Analysis
CAD
Civil engineering
Classical and Continuum Physics
Computational Science and Engineering
Computer aided design
Decomposition
Domains
Engineering
Fields (mathematics)
Finite element analysis
Finite element method
Fredholm equations
Integral equations
Mathematical analysis
Mechanics
Mechanics (physics)
Mesh generation
Methods
Monte Carlo simulation
Numerical analysis
Original Paper
Polynomials
Stochastic processes
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: ProQuest Central (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe9GDj6pYXwQRPGgw3WaT7UFEpaKCRdRCb8t2H1qQVkn9_84km9YH9rrZ3SSzr_l2Zr4BOLTMtU3CechihQDFCROqluKh0izlAx2nbU7xzvfd5KYX3_V5vwLdMhaG3CrLPTHfqM1Y0x35KQIZjg2F4OfvHyFljSLraplCQ_nUCuYspxhbgBojZqwq1C473YfHqV2BiyLlZhOxE9GY-DCaPJiOoCI55CK8ZohMwujHUfV7w_5jOc0PpOtVWPaaZHBRDP0aVOyoDiteqwz8ms3qsPSNcnAdkqfJWL8qYmcO3JAUzoDu7oMik3SAKmxQUMoSHQeWUmDwUGcb0LvuPF_dhD53QqhR45mELS1ilcQJNymRfHERaTtIFcflGRmtjeF4MitnmDFtgTgVUUgiImZb1mmuedTahOpoPLJbEOjUOuWwPGKDWGAnqRYuUYR1EIm3bQOapZik9sTilN_iTU4pkXPRShStzEUrowYcT9u8F7Qac2sfkPQl8VWMyCHmRX1mmbx9epQXCL_SmOzHDTjyldwYX6-Vjy_AnyCKqx81d8tRlH7FZnI2vxpwUo7s7PH_H7c9v7cdWGT5nCIP312o4hDaPdRjJoN9Pzm_AL487B0
  priority: 102
  providerName: ProQuest
Title Stochastic finite cell method for structural mechanics
URI https://link.springer.com/article/10.1007/s00466-021-02026-0
https://www.proquest.com/docview/2545795885
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1432-0924
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: AMVHM
  dateStart: 19860301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: AFBBN
  dateStart: 19860301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-0924
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: 8FG
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5svejBt1gfJYjgQQNpmk22x1Zaq2KR1kI9Ldt9aEFaIfX_O5Ns6lvwtGF3s0lmX_NlZr4FODGhbeiYMT-MJAIUy7Uv65L5UoUJG6soaTCKd77txd1hdD1iIxcUlhbe7oVJMlupF8FuBOXIYRbhLyJ2vCrBMiM6LxzFw7C5sB0wnh-rWUN8RFQlLlTm5zY-bUdfF-Vv1tFs0-lswJrTFr1m3r2bsGSmW7DuNEfPzct0C1Y_0ApuQzyYz9STJAZmz05IqfTo_7yXnxbtoZrq5bSxRLmBuRT8O1HpDgw77fuLru_OR_AVajVzv654JOMoZjohIi_GA2XGiWQ4BQOtlNYMd19pdah1gyMWRaQR8yA0dWMVUyyo70J5OpuaPfBUYqy0mB-E44hjI4niNpaEZxBtN0wFaoWYhHLk4XSGxbNY0B5nohUoWpGJVgQVOFvc85JTZ_xZ-5ikL4iTYkpOL4_yNU3F1aAvmgixkohsxBU4dZXsDB-vpIshwI8gGqtPNQ-LXhRuVqYCwTDDwcc5Fp8XPfte_PvL7f-v-gGshNkYI6_eQyhjl5oj1F3m4yqUeOeyCsvNTqvVo_Ty4aaNaavdu-tXs4H8Bn4D59E
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71caAcgD4QCwtYqKiHNiJ17MQ5VKhAq13arlAfUm_G6wdUQruLsgjx5_htzCTOtqVqb706tpOMJ_Z8mZlvANY9D6XLpUy4MAhQgnKJyYxMjOWFHFpRlJLynY8Gee9MfD6X53Pwt82FobDKdk-sN2o3tvSP_B0CGYkDlZLvJz8TqhpF3tW2hIaJpRXcTk0xFhM7Dvyf3wjhqp3-J1zvt5zv751-7CWxykBi0TaYJplVwuQil64gOiypUuuHhZGoyKmz1jmJZ5gJjjtXKkR0aK_nKuU-88FKK9MM552HRZGJEsHf4oe9wZfjmR9DqqbE5zZiNaJNiWk7dfIeQVMKAEY4zxEJJem1o_H_A-KGp7Y-APefwKNoubLdRtWWYc6PVuBxtGJZ3COqFXh4heJwFfKT6dh-N8QGzcIFGbiMfAWsqVzN0GRmDYUt0X9gKyUiX9hqDc7uRYpPYWE0HvlnwGzhgwnYnvKhUDhJYVXIDWErRP6l78B2KyZtI5E51dP4oWcUzLVoNYpW16LVaQc2Z2MmDY3Hnb3fkPQ18WOMKADnm_lVVbp_cqx3Ee4VgvzVHdiIncIYb29NzGfAlyBKrWs9u-0q6rhDVPpSnzuw1a7s5eXbH-753bO9hge906NDfdgfHLyAJV7rF0UXd2EBl9O_RBtqOnwVFZXB1_v-Nv4B-k0oNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gujBt1itGkTwoKFpmk22x6IW34i10Nuy3YcKkgqp_9-ZZBPfgrew2WySmdnsfNmZbwD2TWg7OmbMDyOJAMVy7cu2ZL5UYcJGKko6jPKdr2_is0F0MWTDD1n8ebR7uSVZ5DQQS1M6ab5o26wS3wjWUfAsQmFE73g0DTMRESWgRQ_CbrWPwHhRYrOFWIloS1zazM9jfFqavn6gv-2U5gtQbwkWnOfodQtVL8OUSVdg0XmRnpuj2QrMf6AYXIW4PxmrR0lszJ59IgfTo3_1XlE52kOX1SsoZIl-A1spEfhJZWsw6J3eH5_5rlaCr9DDmfhtxSMZRzHTCZF6MR4oM0okw-kYaKW0ZrgSS6tDrTsccSmijpgHoWkbq5hiQXsdauk4NRvgqcRYabE9CEcRx0ESxW0sCdsg8u6YOrRKMQnliMSpnsWzqCiQc9EKFK3IRSuCOhxW17wUNBp_9t4j6Qvip0gpAOZBvmaZOO_fiS7CrSSi_eI6HLhOdoy3V9LlE-BLEKXVp56NUovCzdBMIDBmaIic4-mjUrPvp39_uM3_dd-F2duTnrg6v7ncgrkwNzcK9m1ADbVrttGlmYx2cqt9A9yn6Wk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+finite+cell+method+for+structural+mechanics&rft.jtitle=Computational+mechanics&rft.au=Zakian%2C+Pooya&rft.date=2021-07-01&rft.issn=0178-7675&rft.eissn=1432-0924&rft.volume=68&rft.issue=1&rft.spage=185&rft.epage=210&rft_id=info:doi/10.1007%2Fs00466-021-02026-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00466_021_02026_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon