Stochastic finite cell method for structural mechanics
Finite cell method is known as a combination of finite element method and fictitious domain approach in order to reduce the difficulties associated with mesh generation so that it can successfully handle complex geometries. This study proposes a stochastic extension of finite cell method, as a novel...
Saved in:
| Published in | Computational mechanics Vol. 68; no. 1; pp. 185 - 210 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2021
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0178-7675 1432-0924 |
| DOI | 10.1007/s00466-021-02026-0 |
Cover
| Summary: | Finite cell method is known as a combination of finite element method and fictitious domain approach in order to reduce the difficulties associated with mesh generation so that it can successfully handle complex geometries. This study proposes a stochastic extension of finite cell method, as a novel computational framework, for uncertainty quantification of structures. For this purpose, stochastic finite cell method (SFCM) is developed as a new efficient method, including the features of finite cell method, for computational stochastic mechanics considering complicated geometries arising from computer-aided design (CAD). Firstly, finite cell method is formulated for solving the Fredholm integral equation of the second kind used for Karhunen-Loève expansion in order to decompose the random field within a physical domain having arbitrary boundaries. Then, the SFCM is formulated based on Karhunen-Loève and polynomial chaos expansions for the stochastic analysis. Several numerical examples consisting of benchmark problems are provided to demonstrate the efficiency, accuracy and capability of the proposed SFCM. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-7675 1432-0924 |
| DOI: | 10.1007/s00466-021-02026-0 |