Towards Zero Re-Training for Long-Term Hand Gesture Recognition via Ultrasound Sensing

While myoelectric pattern recognition is a prevailing way for gesture recognition, the inherent nonstationarity of electromyography signals hinders its long-term application. This study aims to prove a hypothesis that morphological information of muscle contraction detected by ultrasound image is po...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 23; no. 4; pp. 1639 - 1646
Main Authors Yang, Xingchen, Zhou, Dalin, Zhou, Yu, Huang, Youjia, Liu, Honghai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2018.2867539

Cover

More Information
Summary:While myoelectric pattern recognition is a prevailing way for gesture recognition, the inherent nonstationarity of electromyography signals hinders its long-term application. This study aims to prove a hypothesis that morphological information of muscle contraction detected by ultrasound image is potentially suitable for long-term use. A set of ultrasound-based algorithms are proposed to realize robust hand gesture recognition over multiple days, with user training only at the first day. A markerless calibration algorithm is first presented to position the ultrasound probe during donning and doffing; an algorithm combining speeded-up robust features and bag-of-features model being immune to ultrasound probe shift and rotation is then introduced; a self-enhancing classification method is next adopted to update classification model automatically by incorporating useful knowledge from testing data; finally the performance of long-term hand gesture recognition with zero re-training is validated by a six-day experiment of six healthy subjects, whose outcomes strongly support the hypothesis with about 94% of gesture recognition accuracy for each testing day. This study confirms the feasibility of adoption of ultrasound sensing for long-term musculature related applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2018.2867539