Energy Correlations of Non-Integrable Ising Models: The Scaling Limit in the Cylinder
We consider a class of non-integrable 2 D Ising models whose Hamiltonian, in addition to the standard nearest neighbor couplings, includes additional weak multi-spin interactions which are even under spin flip. We study the model in cylindrical domains of arbitrary aspect ratio and compute the multi...
Saved in:
Published in | Communications in mathematical physics Vol. 397; no. 1; pp. 393 - 483 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0010-3616 1432-0916 |
DOI | 10.1007/s00220-022-04481-z |
Cover
Summary: | We consider a class of non-integrable 2
D
Ising models whose Hamiltonian, in addition to the standard nearest neighbor couplings, includes additional weak multi-spin interactions which are even under spin flip. We study the model in cylindrical domains of arbitrary aspect ratio and compute the multipoint energy correlations at the critical temperature via a multiscale expansion, uniformly convergent in the domain size and in the lattice spacing. We prove that, in the scaling limit, the multipoint energy correlations converge to the same limiting correlations as those of the
nearest neighbor
Ising model in a finite cylinder with renormalized horizontal and vertical couplings, up to an overall multiplicative constant independent of the shape of the domain. The proof is based on a representation of the generating function of correlations in terms of a non-Gaussian Grassmann integral, and a constructive Renormalization Group (RG) analysis thereof. A key technical novelty compared with previous works is a systematic analysis of the effect of the boundary corrections to the RG flow, in particular a proof that the scaling dimension of boundary operators is better by one dimension than their bulk counterparts. In addition, a cancellation mechanism based on an approximate image rule for the fermionic Green’s function is of crucial importance for controlling the flow of the (superficially) marginal boundary terms under RG iterations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-022-04481-z |