Impedance Modulation Control of a Lower-Limb Exoskeleton to Assist Sit-to-Stand Movements

As an important movement of the daily living activities, sit-to-stand (STS) movement is usually a difficult task facing elderly and dependent people. In this article, a novel impedance modulation strategy of a lower-limb exoskeleton is proposed to provide appropriate power and balance assistance dur...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 38; no. 2; pp. 1230 - 1249
Main Authors Huo, Weiguang, Moon, Huiseok, Alouane, Mohamed Amine, Bonnet, Vincent, Huang, Jian, Amirat, Yacine, Vaidyanathan, Ravi, Mohammed, Samer
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1552-3098
1941-0468
DOI10.1109/TRO.2021.3104244

Cover

More Information
Summary:As an important movement of the daily living activities, sit-to-stand (STS) movement is usually a difficult task facing elderly and dependent people. In this article, a novel impedance modulation strategy of a lower-limb exoskeleton is proposed to provide appropriate power and balance assistance during STS movements while preserving the wearer's control priority. The impedance modulation control strategy ensures adaptation of the mechanical impedance of the human-exoskeleton system toward a desired one requiring less wearer's effect while reinforcing the wearer's balance control ability during STS movements. A human joint torque observer is designed to estimate the joint torques developed by the wearer using joint position kinematics instead of electromyography or force sensors; a time-varying desired impedance model is proposed according to the wearer's lower-limb motion ability. A virtual environmental force is designed for balance reinforcement control. Stability and robustness of the proposed method are theoretically analyzed. Simulations are implemented to illustrate the characteristics and performance of the proposed approach. Experiments with four healthy subjects are carried out to evaluate the effectiveness of the proposed method and show satisfactory results in terms of appropriate power assist and balance reinforcement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2021.3104244