Higher-dimensional supersymmetric microlaser arrays
A common route to enhancing the output light from a laser system is to couple multiple lasers to form an array. However, crosstalk and interference between different modes of the individual lasers are generally detrimental to performance, leading to instabilities, and could ultimately be damaging to...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 372; no. 6540; pp. 403 - 408 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
23.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abg3904 |
Cover
Summary: | A common route to enhancing the output light from a laser system is to couple multiple lasers to form an array. However, crosstalk and interference between different modes of the individual lasers are generally detrimental to performance, leading to instabilities, and could ultimately be damaging to the laser cavities. Qiao
et al.
worked with the mathematical framework of supersymmetry, a theory developed in high-energy physics to attempt to describe the makeup and properties of particles, to design a stable two-dimensional laser array. Based on symmetry arguments, the method is scalable and could prove to be a practical platform with which to design and develop complex photonic systems.
Science
, this issue p.
403
Principles taken from supersymmetry theory are used to design a stable two-dimensional laser array.
The nonlinear scaling of complexity with the increased number of components in integrated photonics is a major obstacle impeding large-scale, phase-locked laser arrays. Here, we develop a higher-dimensional supersymmetry formalism for precise mode control and nonlinear power scaling. Our supersymmetric microlaser arrays feature phase-locked coherence and synchronization of all of the evanescently coupled microring lasers—collectively oscillating in the fundamental transverse supermode—which enables high-radiance, small-divergence, and single-frequency laser emission with a two-orders-of-magnitude enhancement in energy density. We also demonstrate the feasibility of structuring high-radiance vortex laser beams, which enhance the laser performance by taking full advantage of spatial degrees of freedom of light. Our approach provides a route for designing large-scale integrated photonic systems in both classical and quantum regimes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0036-8075 1095-9203 1095-9203 |
DOI: | 10.1126/science.abg3904 |