Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Real-Time UAV Path Planning

The development of autonomous unmanned aerial vehicles (UAVs) is of high interest to many governmental and military organizations around the world. An essential aspect of UAV autonomy is the ability for automatic path planning. In this paper, we use the genetic algorithm (GA) and the particle swarm...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 9; no. 1; pp. 132 - 141
Main Authors Roberge, V., Tarbouchi, M., Labonte, G.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2012.2198665

Cover

More Information
Summary:The development of autonomous unmanned aerial vehicles (UAVs) is of high interest to many governmental and military organizations around the world. An essential aspect of UAV autonomy is the ability for automatic path planning. In this paper, we use the genetic algorithm (GA) and the particle swarm optimization algorithm (PSO) to cope with the complexity of the problem and compute feasible and quasi-optimal trajectories for fixed wing UAVs in a complex 3D environment, while considering the dynamic properties of the vehicle. The characteristics of the optimal path are represented in the form of a multiobjective cost function that we developed. The paths produced are composed of line segments, circular arcs and vertical helices. We reduce the execution time of our solutions by using the "single-program, multiple-data" parallel programming paradigm and we achieve real-time performance on standard commercial off-the-shelf multicore CPUs. After achieving a quasi-linear speedup of 7.3 on 8 cores and an execution time of 10 s for both algorithms, we conclude that by using a parallel implementation on standard multicore CPUs, real-time path planning for UAVs is possible. Moreover, our rigorous comparison of the two algorithms shows, with statistical significance, that the GA produces superior trajectories to the PSO.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2012.2198665