A Novel OBDD-Based Reliability Evaluation Algorithm for Wireless Sensor Networks on the Multicast Model

The two-terminal reliability calculation for wireless sensor networks (WSNs) is a #P-hard problem. The reliability calculation of WSNs on the multicast model provides an even worse combinatorial explosion of node states with respect to the calculation of WSNs on the unicast model; many real WSNs req...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2015; no. 2015; pp. 1 - 14
Main Authors Gao, Xi, Dong, Rongsheng, Nie, Chenhua, Yan, Zongshuai, Liu, Jianming
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1026-7077
1563-5147
1563-5147
DOI10.1155/2015/269781

Cover

More Information
Summary:The two-terminal reliability calculation for wireless sensor networks (WSNs) is a #P-hard problem. The reliability calculation of WSNs on the multicast model provides an even worse combinatorial explosion of node states with respect to the calculation of WSNs on the unicast model; many real WSNs require the multicast model to deliver information. This research first provides a formal definition for the WSN on the multicast model. Next, a symbolic OBDD_Multicast algorithm is proposed to evaluate the reliability of WSNs on the multicast model. Furthermore, our research on OBDD_Multicast construction avoids the problem of invalid expansion, which reduces the number of subnetworks by identifying the redundant paths of two adjacent nodes and s-t unconnected paths. Experiments show that the OBDD_Multicast both reduces the complexity of the WSN reliability analysis and has a lower running time than Xing’s OBDD- (ordered binary decision diagram-) based algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1024-123X
1026-7077
1563-5147
1563-5147
DOI:10.1155/2015/269781