Nonlinear Steady-State Model Based Gas Turbine Health Status Estimation Approach with Improved Particle Swarm Optimization Algorithm
In the lifespan of a gas turbine engine, abrupt faults and performance degradation of its gas-path components may happen; however the performance degradation is not easily foreseeable when the level of degradation is small. Gas path analysis (GPA) method has been widely applied to monitor gas turbin...
Saved in:
| Published in | Mathematical problems in engineering Vol. 2015; no. 2015; pp. 1 - 12 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2015
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1024-123X 1026-7077 1563-5147 1563-5147 |
| DOI | 10.1155/2015/940757 |
Cover
| Abstract | In the lifespan of a gas turbine engine, abrupt faults and performance degradation of its gas-path components may happen; however the performance degradation is not easily foreseeable when the level of degradation is small. Gas path analysis (GPA) method has been widely applied to monitor gas turbine engine health status as it can easily obtain the magnitudes of the detected component faults. However, when the number of components within engine is large or/and the measurement noise level is high, the smearing effect may be strong and the degraded components may not be recognized. In order to improve diagnostic effect, a nonlinear steady-state model based gas turbine health status estimation approach with improved particle swarm optimization algorithm (PSO-GPA) has been proposed in this study. The proposed approach has been tested in ten test cases where the degradation of a model three-shaft marine engine has been analyzed. These case studies have shown that the approach can accurately search and isolate the degraded components and further quantify the degradation for major gas-path components. Compared with the typical GPA method, the approach has shown better measurement noise immunity and diagnostic accuracy. |
|---|---|
| AbstractList | In the lifespan of a gas turbine engine, abrupt faults and performance degradation of its gas-path components may happen; however the performance degradation is not easily foreseeable when the level of degradation is small. Gas path analysis (GPA) method has been widely applied to monitor gas turbine engine health status as it can easily obtain the magnitudes of the detected component faults. However, when the number of components within engine is large or/and the measurement noise level is high, the smearing effect may be strong and the degraded components may not be recognized. In order to improve diagnostic effect, a nonlinear steady-state model based gas turbine health status estimation approach with improved particle swarm optimization algorithm (PSO-GPA) has been proposed in this study. The proposed approach has been tested in ten test cases where the degradation of a model three-shaft marine engine has been analyzed. These case studies have shown that the approach can accurately search and isolate the degraded components and further quantify the degradation for major gas-path components. Compared with the typical GPA method, the approach has shown better measurement noise immunity and diagnostic accuracy. |
| Author | Ying, Yulong Cao, Yunpeng Li, Jing-chao Li, Shuying |
| Author_xml | – sequence: 1 fullname: Li, Jing-chao – sequence: 2 fullname: Li, Shuying – sequence: 3 fullname: Cao, Yunpeng – sequence: 4 fullname: Ying, Yulong |
| BookMark | eNqF0E1rFTEUBuBBKthWV-4l4EbUsTnJZDKzrKVfUK1wK7gbzsyc8aZkPppkvNyu_eHmOl1IQbpKQp434bwHyd4wDpQkr4F_AlDqSHBQR2XGtdLPkn1QuUwVZHov7rnIUhDyx4vkwPtbzgUoKPaT31_HwZqB0LFVIGy36SpgIPZlbMmyz-ipZefo2c3s6sjYBaENa7ZDs2enPpgegxkHdjxNbsRmzTYm3l_28fQrZr-hC6axxFYbdD27nmLA3D9E7M_RRd2_TJ53aD29elgPk-9npzcnF-nV9fnlyfFV2siiDKnOAXLJc1GTLFUtukLkoEvUneIliqxuJHSaNGZFCzUvW9HopkbOCbSsScvD5OPy7jxMuN2gtdXk4gBuWwGvdg1WuwarpcHI3y08znI3kw9Vb3xD1uJA4-wr0FCUgkuASN8-orfj7IY4TAV5KVVZgFBRfVhU40bvHXVPfA-PdGPC3-aCQ2P_k3m_ZNZmaHFjnvjgzYIpEurwH6wVCC3_ABC6tJs |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2927306 crossref_primary_10_3390_app8122372 crossref_primary_10_1109_TR_2017_2695482 crossref_primary_10_1109_TR_2024_3383922 crossref_primary_10_1098_rsos_181093 crossref_primary_10_1155_2018_1918350 crossref_primary_10_1155_2021_9912574 crossref_primary_10_1155_2018_9412350 crossref_primary_10_1109_ACCESS_2021_3101647 crossref_primary_10_3390_su15043468 crossref_primary_10_1007_s12206_023_1040_2 crossref_primary_10_1088_1361_6501_ac97b4 crossref_primary_10_3390_en14144356 crossref_primary_10_1177_1687814018767165 crossref_primary_10_3390_ijtpp8010003 crossref_primary_10_1098_rsos_172454 crossref_primary_10_1098_rsos_191596 crossref_primary_10_1177_1687814015627769 |
| Cites_doi | 10.1115/1.4023608 10.1504/ijcat.2013.054302 10.1504/ijcat.2013.056917 10.2514/3.60240 10.2514/2.6050 10.1115/1.4026598 10.1115/1.2136369 10.1115/1.2906565 10.1115/1.3159378 10.1016/j.parco.2006.11.005 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 Yulong Ying et al. Copyright © 2015 Yulong Ying et al. Yulong Ying et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| Copyright_xml | – notice: Copyright © 2015 Yulong Ying et al. – notice: Copyright © 2015 Yulong Ying et al. Yulong Ying et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS H8D L7M ADTOC UNPAY |
| DOI | 10.1155/2015/940757 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Middle East & Africa Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Aerospace Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Publicly Available Content Database Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1563-5147 |
| Editor | Gasparetto, Alessandro |
| Editor_xml | – sequence: 1 givenname: Alessandro surname: Gasparetto fullname: Gasparetto, Alessandro |
| EndPage | 12 |
| ExternalDocumentID | 10.1155/2015/940757 3734839401 10_1155_2015_940757 1075127 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -~9 0R~ 188 24P 29M 2UF 2WC 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAMMB ABJCF ABUWG ACCMX ACIPV ACIWK ADBBV ADJCN AEFGJ AENEX AFFNX AFKRA AGXDD AHFXO AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ C1A CAG CCPQU COF CS3 CWDGH E3Z EBS EJD H13 HCIFZ IL9 IPNFZ K6V K7- KQ8 L6V M7S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO Q2X REM RHU RIG RNS TR2 UGNYK XSB YQT 3V. AAJEY ABDBF AINHJ CAHYU CNMHZ ESX GROUPED_DOAJ I-F IAO IEA IOF ISR ITC MK~ M~E RHW RHX TUS ~8M AAYXX CITATION 7TB 8FD AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQUKI PRINS H8D L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c389t-761163062be395b2f826179a7f509a24bc31f7e7a48d1b09d2c7cba00e173be73 |
| IEDL.DBID | RHX |
| ISSN | 1024-123X 1026-7077 1563-5147 |
| IngestDate | Wed Oct 01 16:44:53 EDT 2025 Thu Oct 02 07:02:51 EDT 2025 Fri Jul 25 10:07:50 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Wed Oct 01 04:13:17 EDT 2025 Sun Jun 02 18:54:43 EDT 2024 Thu Sep 25 15:25:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2015 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/3.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-761163062be395b2f826179a7f509a24bc31f7e7a48d1b09d2c7cba00e173be73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1155/2015/940757 |
| PQID | 1693598125 |
| PQPubID | 237775 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1155_2015_940757 proquest_miscellaneous_1718920311 proquest_journals_1693598125 crossref_primary_10_1155_2015_940757 crossref_citationtrail_10_1155_2015_940757 hindawi_primary_10_1155_2015_940757 emarefa_primary_1075127 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-01-01 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: New York |
| PublicationTitle | Mathematical problems in engineering |
| PublicationYear | 2015 |
| Publisher | Hindawi Publishing Corporation John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: John Wiley & Sons, Inc |
| References | Li Y. G. Singh R. An advanced gas turbine gas path diagnostic system—PYTHIA Proceedings of the 47th International Symposium on Air Breathing Engines 2005 Munich, Germany Paper No. ISABE-2005-1284 Wallin M. Grönstedt T. A comparative study of genetic algorithms and gradient methods for RM12 turbofan engine diagnostics and performance estimation Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air June 2004 Vienna, Austria GT2004-53591 Gulati A. Zedda M. Singh R. Gas turbine engine and sensor multiple operating point analysis using optimization techniques Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2000 AIAA-2000-3716 Wang L. Li Y. G. Ghafir M. F. A. Rough set diagnostic frameworks for gas turbine fault classification Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition June 2013 American Society of Mechanical Engineers V002T07A007 (5) 2010; 132 Loboda I. Feldshteyn Y. Ponomaryov V. Neural networks for gas turbine fault identification: multilayer perceptron or radial basis network? Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition June 2011 Vancouver, Canada ASME 465 475 10.1115/GT2011-46752 (12) 2007; 33 Mucino M. CCGT performance simulation and diagnostics for operations optimisation and risk management [M.S. thesis] 2007 Cranfield, UK Cranfield University (7) 2002; 18 (19) 2014; 136 Engelbrecht A. P. Particle swarm optimization Proceedings of the Companion Publication of the 2014 Genetic and Evolutionary Computation Conference (GECCO '14) July 2014 381 406 Dyson R. J. E. Doel D. L. CF-80 Condition monitoring—the engine manufacturing's involvement in data acquisition and analysis AIAA-84-1412, 1987 (18) 2013; 48 (14) 2013; 135 Liu Y. Su M. Nonlinear model based diagnostic of gas turbine faults: a case study Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition 2011 American Society of Mechanical Engineers 1 8 (11) 2014; 136 Eberhart R. C. Kennedy J. A new optimizer using particle swarm theory Proceedings of the 6th International Symposium on Micro Machine and Human Science October 1995 39 43 2-s2.0-0029517385 Eberhart R. C. Shi Y. Tracking and optimizing dynamic systems with particle swarms 1 Proceedings of the Congress on Evolutionary Computation May 2001 94 100 2-s2.0-0034870045 (2) 1973; 10 (17) 2013; 47 (4) 2006; 128 Li Y. G. A genetic algorithm approach to estimate performance status of gas turbines Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air June 2008 Berlin, Germany International Gas Turbine Institute 431 440 Paper no. GT2008-50175 10.1115/GT2008-50175 Salar A. Sedigh A. K. Hosseini S. Khaledi H. A hybrid EKF-fuzzy approach to fault detection and isolation of industrial gas turbines Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition 2011 251 260 (23) 1992; 114 12 23 2 14 4 5 17 7 18 19 |
| References_xml | – volume: 33 start-page: 124 issue: 2 year: 2007 end-page: 143 ident: 12 article-title: Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization – reference: Engelbrecht A. P. Particle swarm optimization Proceedings of the Companion Publication of the 2014 Genetic and Evolutionary Computation Conference (GECCO '14) July 2014 381 406 – volume: 136 issue: 3 year: 2014 ident: 11 article-title: Creep life prediction for aero gas turbine hot section component using artificial neural networks – volume: 128 start-page: 789 issue: 4 year: 2006 end-page: 795 ident: 4 article-title: An adaptation approach for gas turbine design-point performance simulation – volume: 132 issue: 4 year: 2010 ident: 5 article-title: Gas turbine performance and health status estimation using adaptive gas path analysis – reference: Wallin M. Grönstedt T. A comparative study of genetic algorithms and gradient methods for RM12 turbofan engine diagnostics and performance estimation Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air June 2004 Vienna, Austria GT2004-53591 – reference: Salar A. Sedigh A. K. Hosseini S. Khaledi H. A hybrid EKF-fuzzy approach to fault detection and isolation of industrial gas turbines Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition 2011 251 260 – volume: 135 issue: 7 year: 2013 ident: 14 article-title: Sparse bayesian learning for gas path diagnostics – reference: Eberhart R. C. Kennedy J. A new optimizer using particle swarm theory Proceedings of the 6th International Symposium on Micro Machine and Human Science October 1995 39 43 2-s2.0-0029517385 – reference: Liu Y. Su M. Nonlinear model based diagnostic of gas turbine faults: a case study Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition 2011 American Society of Mechanical Engineers 1 8 – reference: Eberhart R. C. Shi Y. Tracking and optimizing dynamic systems with particle swarms 1 Proceedings of the Congress on Evolutionary Computation May 2001 94 100 2-s2.0-0034870045 – volume: 48 start-page: 212 issue: 3 year: 2013 end-page: 221 ident: 18 article-title: Research on fuel supply rate of marine intercooledcycle engine based on simulation experiment – reference: Loboda I. Feldshteyn Y. Ponomaryov V. Neural networks for gas turbine fault identification: multilayer perceptron or radial basis network? Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition June 2011 Vancouver, Canada ASME 465 475 10.1115/GT2011-46752 – volume: 114 start-page: 161 issue: 2 year: 1992 end-page: 168 ident: 23 article-title: Performance deterioration in industrial gas turbines , Trans – reference: Wang L. Li Y. G. Ghafir M. F. A. Rough set diagnostic frameworks for gas turbine fault classification Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition June 2013 American Society of Mechanical Engineers V002T07A007 – reference: Li Y. G. A genetic algorithm approach to estimate performance status of gas turbines Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air June 2008 Berlin, Germany International Gas Turbine Institute 431 440 Paper no. GT2008-50175 10.1115/GT2008-50175 – reference: Li Y. G. Singh R. An advanced gas turbine gas path diagnostic system—PYTHIA Proceedings of the 47th International Symposium on Air Breathing Engines 2005 Munich, Germany Paper No. ISABE-2005-1284 – volume: 18 start-page: 1019 issue: 5 year: 2002 end-page: 1025 ident: 7 article-title: Gas turbine engine and sensor fault diagnosis using optimization techniques – volume: 47 start-page: 56 issue: 1 year: 2013 end-page: 67 ident: 17 article-title: Study on flow parameters optimisation for marine gas turbine intercooler system based on simulation experiment – volume: 10 start-page: 400 issue: 7 year: 1973 end-page: 403 ident: 2 article-title: Gas path analysis applied to turbine engine condition monitoring – volume: 136 issue: 7 year: 2014 ident: 19 article-title: Gas turbine modeling for diagnosis and control – reference: Dyson R. J. E. Doel D. L. CF-80 Condition monitoring—the engine manufacturing's involvement in data acquisition and analysis AIAA-84-1412, 1987 – reference: Gulati A. Zedda M. Singh R. Gas turbine engine and sensor multiple operating point analysis using optimization techniques Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2000 AIAA-2000-3716 – reference: Mucino M. CCGT performance simulation and diagnostics for operations optimisation and risk management [M.S. thesis] 2007 Cranfield, UK Cranfield University – ident: 14 doi: 10.1115/1.4023608 – ident: 17 doi: 10.1504/ijcat.2013.054302 – ident: 18 doi: 10.1504/ijcat.2013.056917 – ident: 2 doi: 10.2514/3.60240 – ident: 7 doi: 10.2514/2.6050 – ident: 19 doi: 10.1115/1.4026598 – ident: 4 doi: 10.1115/1.2136369 – volume: 136 issue: 3 year: 2014 ident: 11 publication-title: Journal of Engineering for Gas Turbines and Power – ident: 23 doi: 10.1115/1.2906565 – ident: 5 doi: 10.1115/1.3159378 – ident: 12 doi: 10.1016/j.parco.2006.11.005 |
| SSID | ssj0021518 |
| Score | 2.203275 |
| Snippet | In the lifespan of a gas turbine engine, abrupt faults and performance degradation of its gas-path components may happen; however the performance degradation... |
| SourceID | unpaywall proquest crossref hindawi emarefa |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial intelligence Degradation Diagnostic systems Efficiency Engine noise Fault detection Gas path analysis Gas turbine engines Health Marine engines Mathematical models Mathematical problems Methods Noise levels Noise measurement Noise monitoring Nonlinearity Optimization algorithms Particle swarm optimization Performance degradation Steady state models |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdGpwle-P4oDGTEeEGymthJXD8g1KGOCYkywSb1LbIdhyGlaWkbVXvnD-cudkqRUN8i-ZwoufPd7xzf7wg5SVwyBJhqmLBOsQQgMzMFF0xLq7kQzrq2W8OXSXZ-lXyeptMDMulqYfBYZecTW0ddzC3ukQ-QNCRVEI7SD4tfDLtG4d_VroWGDq0VivctxdgtcsiRGatHDk_Hk4tv2xQM4psvjuPI1iemoWIPJg0gEqYDBfkNRqqdGHXkZhouIHAdXWOavPn5Dxi93dQLfbPRVbUTl87uk7sBUNKRt4AH5MDVD8m9AC5pWLqrR-T3xJNi6CXFM7zFDWtxJsVmaBU9hWBW0E96RS-bJSTLjvr6JIpCzYqOwRP4Ikc6CizkFLdwqd-UgLkXwQbp941ezuhXcEWzUONJR9UP-JTr69ljcnU2vvx4zkILBmYByayZzGIAbFHGjRMqNbwcIoO70rIEoKF5YqyIS-mkToZFbCJVcCut0VHkYimMk-IJ6dXz2j0jNMNGnBncB14xySJleFICNk1LbSOunOuTd91Hz23gJ8c2GVXe5ilpmqOGcq-hPjnZCi88Lcf_xZ4G7e1IScA4MPImaHP__ONO03lY26v8ryX2yevtMKxK_NWiazdvQAZCvuLgMOM-ebu1kH2Per7_US_IHRT2mz_HpLdeNu4lwKG1eRVs_A9D5AWY priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeg0wQvjK-NwkBGjBckd4kdx_VjQRsTEmUSq1TEQ2Q7DkykaZU0qsYzfzjn2K06hCbEW6JcPmxf7n5n-36H0FFikyHAVE2YsZIkAJmJzikjShhFGbPGdtUaPo7Ts0nyYcqnYVely4XJHUX8XOXN4LuLSVeXnbUO_docA5SEcD3mxxICES4Gi7y4jXZSDji8h3Ym4_PRl255kzoyPjb1xykRUVeCEWIVRgAhiJCoB750-2nXXNOunSk4AH-1G77kGga901YLdbVSZbnljk730Nd1Q_wulB-DdqkH5ucfHI__19L76F5AqXjk1eoBumWrh2gvIFYc7EHzCP0ae6YNVWO3MTi_Ih14xa7CWonfgofM8XvV4Iu2hgjcYp_0hJ1Q2-ATMC8-cxKPArU5dvPC2M90wL3nQbHx55WqZ_gT2LdZSBzFo_LbvAbp2WM0OT25eHdGQl0HYgAeLYlIY0CBUUq1ZZJrWgwdLbxUogD0omiiDYsLYYVKhnmsI5lTI4xWUWRjwbQVbB_1qnllnyCcuuqeKTwHmpikkdQ0KQDw8kKZiEpr--jNekgzE0jPXe2NMuuCH84z18eZ7-M-OtoILzzXx9_FDoJubEkJAE5w5VUYy5vvP1zrUbYe7sxx4nAJaIv30cvNZfjV3fqNquy8BRnAEZKCFY776PVG_2561dN_lHuG7rozP7V0iHrLurXPAWwt9YvwV_0GVK0iJA priority: 102 providerName: Unpaywall |
| Title | Nonlinear Steady-State Model Based Gas Turbine Health Status Estimation Approach with Improved Particle Swarm Optimization Algorithm |
| URI | https://search.emarefa.net/detail/BIM-1075127 https://dx.doi.org/10.1155/2015/940757 https://www.proquest.com/docview/1693598125 https://www.proquest.com/docview/1718920311 https://downloads.hindawi.com/journals/mpe/2015/940757.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2015 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1563-5147 dateEnd: 20240530 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1563-5147 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1563-5147 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Open Access customDbUrl: eissn: 1563-5147 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: 24P dateStart: 19950101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELeACY0X9gl0Y5WnsZdJEYkdx_FjmVqqTes6RqXuKbIdB5DSFCWNKt73h-9cmwo2hPYWx-d83V3ud7bvDqGj2MQpwFQVUG1EEANkDlROaCC5loRSo82qWsO3UTKcxF-mbOo3yDb_LuGDtQP3PGLHAhwPxjfRZprYjVtnw-narQKb5QLeiM3AR6c-Cu-voffszraZSTgAY7R9aV3f5dU9gPm0ra7lzVKW5R1bM3iOdj1IxD3H1Rdow1Qv0TMPGLFXx-YV-j1yiS5kje2-3PwmWGFHbAuclfgEDFSOT2WDz9saHGCDXcwRtkRtg_ug3S5wEfd8ZnFsp2Wxm2iAsWMvV_jnUtYz_B1-LzMft4l75cW8BurZazQZ9M8_DwNfViHQgE4WAU8iAGFhQpShgilSpDYru5C8APAgSaw0jQpuuIzTPFKhyInmWskwNBGnynC6h7aqeWUOEE5scc0ErgOvGCehUCQuAG-yQuqQCGM66NPtR8-0zzluS1-U2cr3YCyzHMochzroaE187VJtPEy277l3h4oDboGeD56bj48_vOV05vW1yWxKGiYA7LAOer_uBk2zyyeyMvMWaMCMCwI_waiDPq4l5LFbvfmvB3qLdmzLzescoq1F3Zp3gHQWqgviPjjtoicn_dH4DFpff6TdlfDDuclo3Pv1B0r9-X4 |
| linkProvider | Hindawi Publishing |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVFW5UN4ECiyi5YDkxl6_4gOH0FdK24BEKnIzu-s1RThOiG1F4czv4a_wl5jNrkNAKLceuEXyrJ1svp3vm_XODMCOJ702ylRuuUJGloeS2eIJdS0WCkZdVwo579Zw3gu6F96bgT9Ygx91Low6Vln7xLmjTkZC7ZG3VNEQP0I6qk9QnsrZFOOz4tXJAf6Zu5QeHfb3u5ZpIWAJZOLSwiAdBYcdUC7dyOc0basK5BELUyRKRj0uXCcNZci8duJwO0qoCAVnti2d0OUydPG-L8ZfLdWlSr3NNS07rsE64tyhDVjf_3Bw3F2EeMifOvmOqmqA7sBkBCJpt5Bp_VaE8ZNiwiUO3JBDhh-QGDcuVRg-_fyH2N2s8jGbTVmWLfHe0Rb8rGdMH3f5sleVfE98-6uY5P8zpTfhhpHgpKPXzC1Yk_lt2DJynBhnV9yB7z1dRoRNiDr1nMysuTInqn1cRl4j_SfkmBWkX004mhGd0UWUUVWQQ_SdOi2UdEzddqI2vYnexsGx78yqJe-nbDIkb9F5D01WLOlkn_Cbl5fDu3BxJdNzDxr5KJcPgASqdWmA98Gf6AV2xKmXopr3UyZsGknZhJc1jGJhKrqrxiJZPI_sfD9WmIs15pqwszAe60Im_za7b_C4ZBWiKsQrzw0-V4_frrEWG29YxL-B1oRni8vox9TLKZbLUYU2KJIiihTjNGF3gflVj3q4-lFPYbPbPz-Lz056p4_guhqot862oVFOKvkYxWTJn5gVTODjVYP-F8tofrk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VVKVcKF-FQIFFtBckN876Kz4gFJqmKYVQqa3Izeyu1xThOCG2FYUzv4q_wp9hNrsOAaHceuAWybO2sn477816ZwZg15VuC2UqtxwhQ8tFyWzxmDoWCwSjjiOFnHdreNf3exfum4E3WIMfVS6MOlZZ-cS5o45HQu2RN1TREC9EOvIaiTkWcdrpvhp_tVQHKfWltWqnoSFyImdTDN_yl8cdfNd7lHYPzw96lukwYAkk6sLCGB71iO1TLp3Q4zRpqQLlIQsS5FFGXS6cZhLIgLmtuMntMKYiEJzZtmwGDpeBg_e9BustH29Ug_WDD52j3iLcQy7ViXhUVQZ0BiY7EAm8gazrNUKMpRQrLvHhhhwy_IEkuXGpQvLp5z-E72aZjdlsytJ0iQO7W_Czmj199OXLflnwffHtr8KS_-f03oKbRpqTtl5Lt2FNZndgy8h0Ypxgfhe-93V5ETYh6jR0PLPmip2otnIpeY2yICZHLCfn5YSjGdGZXkQZlTk5RJ-q00VJ29RzJ2oznOjtHRx7alYzOZuyyZC8R6c-NNmypJ1-wpkqLof34OJK5mIbatkokw-A-KqlqY_3wb_o-nbIqZugyvcSJmwaSlmHFxWkImEqvauGI2k0j_g8L1L4izT-6rC7MB7rAif_NrtvsLlkFaBaxCvPDVZXj9-pcBcZL5lHv0FXh2eLy-jf1EcrlslRiTYonkKK1NOsw94C_6se9XD1o57CdUR29Pa4f_IIbqhxekdtB2rFpJSPUWMW_IlZzAQ-XjXAfwHBr4eB |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeg0wQvjK-NwkBGjBckd4kdx_VjQRsTEmUSq1TEQ2Q7DkykaZU0qsYzfzjn2K06hCbEW6JcPmxf7n5n-36H0FFikyHAVE2YsZIkAJmJzikjShhFGbPGdtUaPo7Ts0nyYcqnYVely4XJHUX8XOXN4LuLSVeXnbUO_docA5SEcD3mxxICES4Gi7y4jXZSDji8h3Ym4_PRl255kzoyPjb1xykRUVeCEWIVRgAhiJCoB750-2nXXNOunSk4AH-1G77kGga901YLdbVSZbnljk730Nd1Q_wulB-DdqkH5ucfHI__19L76F5AqXjk1eoBumWrh2gvIFYc7EHzCP0ae6YNVWO3MTi_Ih14xa7CWonfgofM8XvV4Iu2hgjcYp_0hJ1Q2-ATMC8-cxKPArU5dvPC2M90wL3nQbHx55WqZ_gT2LdZSBzFo_LbvAbp2WM0OT25eHdGQl0HYgAeLYlIY0CBUUq1ZZJrWgwdLbxUogD0omiiDYsLYYVKhnmsI5lTI4xWUWRjwbQVbB_1qnllnyCcuuqeKTwHmpikkdQ0KQDw8kKZiEpr--jNekgzE0jPXe2NMuuCH84z18eZ7-M-OtoILzzXx9_FDoJubEkJAE5w5VUYy5vvP1zrUbYe7sxx4nAJaIv30cvNZfjV3fqNquy8BRnAEZKCFY776PVG_2561dN_lHuG7rozP7V0iHrLurXPAWwt9YvwV_0GVK0iJA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Steady-State+Model+Based+Gas+Turbine+Health+Status+Estimation+Approach+with+Improved+Particle+Swarm+Optimization+Algorithm&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Ying%2C+Yulong&rft.au=Cao%2C+Yunpeng&rft.au=Li%2C+Shuying&rft.au=Li%2C+Jingchao&rft.date=2015-01-01&rft.pub=Hindawi+Publishing+Corporation&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2015&rft_id=info:doi/10.1155%2F2015%2F940757&rft.externalDocID=10_1155_2015_940757 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |