Nonlinear Steady-State Model Based Gas Turbine Health Status Estimation Approach with Improved Particle Swarm Optimization Algorithm

In the lifespan of a gas turbine engine, abrupt faults and performance degradation of its gas-path components may happen; however the performance degradation is not easily foreseeable when the level of degradation is small. Gas path analysis (GPA) method has been widely applied to monitor gas turbin...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2015; no. 2015; pp. 1 - 12
Main Authors Li, Jing-chao, Li, Shuying, Cao, Yunpeng, Ying, Yulong
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1026-7077
1563-5147
1563-5147
DOI10.1155/2015/940757

Cover

More Information
Summary:In the lifespan of a gas turbine engine, abrupt faults and performance degradation of its gas-path components may happen; however the performance degradation is not easily foreseeable when the level of degradation is small. Gas path analysis (GPA) method has been widely applied to monitor gas turbine engine health status as it can easily obtain the magnitudes of the detected component faults. However, when the number of components within engine is large or/and the measurement noise level is high, the smearing effect may be strong and the degraded components may not be recognized. In order to improve diagnostic effect, a nonlinear steady-state model based gas turbine health status estimation approach with improved particle swarm optimization algorithm (PSO-GPA) has been proposed in this study. The proposed approach has been tested in ten test cases where the degradation of a model three-shaft marine engine has been analyzed. These case studies have shown that the approach can accurately search and isolate the degraded components and further quantify the degradation for major gas-path components. Compared with the typical GPA method, the approach has shown better measurement noise immunity and diagnostic accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1024-123X
1026-7077
1563-5147
1563-5147
DOI:10.1155/2015/940757