Deep transfer learning based feature fusion model with Bonobo optimization algorithm for enhanced brain tumor segmentation and classification through biomedical imaging

The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the main stage in enhancing patients’ quality of life. Biomedical imaging permits the non-invasive evaluation of diseases, depending upon visual assessme...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 34030 - 22
Main Authors Gurunathan, Pradeep, Srinivasan, Preethi Saroj, S, Ravimaran
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.09.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-12973-w

Cover

More Information
Summary:The brain tumour (BT) is an aggressive disease among others, which leads to a very short life expectancy. Therefore, early and prompt treatment is the main stage in enhancing patients’ quality of life. Biomedical imaging permits the non-invasive evaluation of diseases, depending upon visual assessments that lead to better medical outcome expectations and therapeutic planning. Numerous image techniques like computed tomography (CT), magnetic resonance imaging (MRI), etc., are employed for evaluating cancer in the brain. The detection, segmentation and extraction of diseased tumour regions from biomedical images are a primary concern, but are tiresome and time-consuming tasks done by clinical specialists, and their outcome depends on their experience only. Therefore, the use of computer-aided technologies is essential to overcoming these limitations. Recently, artificial intelligence (AI) models have been very effective in enhancing performance and improving the method of medical image diagnosis. This paper proposes an Enhanced Brain Tumour Segmentation through Biomedical Imaging and Feature Model Fusion with Bonobo Optimiser (EBTS-BIFMFBO) model. The main intention of the EBTS-BIFMFBO model relies on enhancing the segmentation and classification model of BTs utilizing advanced models. Initially, the EBTS-BIFMFBO technique follows bilateral filter (BF)-based noise elimination and CLAHE-based contrast enhancement. Furthermore, the proposed EBTS-BIFMFBO model involves a segmentation process by the DeepLabV3 + model to identify tumour regions for accurate diagnosis. Moreover, the fusion models such as InceptionResNetV2, MobileNet, and DenseNet201 are employed for the feature extraction. Additionally, the convolutional sparse autoencoder (CSAE) method is implemented for the classification process of BT. Finally, the hyper-parameter selection of CSAE is performed by the bonobo optimizer (BO) method. A vast experiment is conducted to highlight the performance of the EBTS-BIFMFBO approach under the Figshare BT dataset. The comparison results of the EBTS-BIFMFBO approach portrayed a superior accuracy value of 99.16% over existing models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-12973-w