Cutting ellipses from area-minimizing rectangles

A set of ellipses, with given semi-major and semi-minor axes, is to be cut from a rectangular design plate, while minimizing the area of the design rectangle. The design plate is subject to lower and upper bounds of its widths and lengths; the ellipses are free of any orientation restrictions. We pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 59; no. 2-3; pp. 405 - 437
Main Authors Kallrath, Josef, Rebennack, Steffen
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.07.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-5001
1573-2916
DOI10.1007/s10898-013-0125-3

Cover

More Information
Summary:A set of ellipses, with given semi-major and semi-minor axes, is to be cut from a rectangular design plate, while minimizing the area of the design rectangle. The design plate is subject to lower and upper bounds of its widths and lengths; the ellipses are free of any orientation restrictions. We present new mathematical programming formulations for this ellipse cutting problem. The key idea in the developed non-convex nonlinear programming models is to use separating hyperlines to ensure the ellipses do not overlap with each other. For small number of ellipses we compute feasible points which are globally optimal subject to the finite arithmetic of the global solvers at hand. However, for more than 14 ellipses none of the local or global NLP solvers available in GAMS can even compute a feasible point. Therefore, we develop polylithic approaches, in which the ellipses are added sequentially in a strip-packing fashion to the rectangle restricted in width, but unrestricted in length. The rectangle’s area is minimized in each step in a greedy fashion. The sequence in which we add the ellipses is random; this adds some GRASP flavor to our approach. The polylithic algorithms allow us to compute good, near optimal solutions for up to 100 ellipses.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-013-0125-3