Efficient combined immune-decomposition algorithm for optimal buffer allocation in production lines for throughput and profit maximization

Adequate allocation of buffers in transfer lines is crucial to the optimization of line throughput and work in process (WIP) inventory. Their optimal allocation is subject to specific constraints, associated costs, and revenue projections. In this paper, we implement a combined artificial immune sys...

Full description

Saved in:
Bibliographic Details
Published inComputers & operations research Vol. 37; no. 4; pp. 611 - 620
Main Authors Massim, Y., Yalaoui, F., Amodeo, L., Chatelet, E., Zeblah, A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2010
Elsevier
Pergamon Press Inc
Subjects
Online AccessGet full text
ISSN0305-0548
1873-765X
0305-0548
DOI10.1016/j.cor.2009.06.016

Cover

More Information
Summary:Adequate allocation of buffers in transfer lines is crucial to the optimization of line throughput and work in process (WIP) inventory. Their optimal allocation is subject to specific constraints, associated costs, and revenue projections. In this paper, we implement a combined artificial immune system optimization algorithm in conjunction with a decomposition method to optimally allocate buffers in transfer lines. The aim of the buffer allocation problem (BAP) is to achieve optimal system performance under buffers space constraints. Maximizing line throughput does not necessarily achieve maximum profit. In this study the immune decomposition algorithm (IDA) is used to determine optimal buffer allocation for maximum line throughput and maximum line economic profit. Results of extensive series of tests carried out to compare, in production lines with different characteristics, the performances of the proposed method and those of other algorithms are presented.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2009.06.016