Fractional-Order Gas Film Model

In this paper, a fractional-order model of the gas film is proposed for the dynamic characteristics of an air bearing. Based on the dynamic characteristics common between gas film and viscoelastic body, the idea of the fractional-order equivalent modeling of the dynamic characteristics of the gas fi...

Full description

Saved in:
Bibliographic Details
Published inFractal and fractional Vol. 6; no. 10; p. 561
Main Authors Tang, Xu, Luo, Ying, Han, Bin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN2504-3110
2504-3110
DOI10.3390/fractalfract6100561

Cover

More Information
Summary:In this paper, a fractional-order model of the gas film is proposed for the dynamic characteristics of an air bearing. Based on the dynamic characteristics common between gas film and viscoelastic body, the idea of the fractional-order equivalent modeling of the dynamic characteristics of the gas film is presented to improve the modeling accuracy. Four fractional-order gas film (FOGF) models are introduced based on generalization of traditional viscoelastic models. The analysis of the characteristics of the FOGF models shows that the FOGF model can capture more complex dynamic characteristics and fit the real dynamic data of the gas film better than traditional models. A genetic algorithm particle swarm optimization (GA-PSO) method is used for parameter identification of the proposed models. The experimental results tested on the air bearing motion platform show that the FOGF models are superior in accuracy to the traditional equivalent models for the gas film. In particular, the fractional-order Maxwell gas film (FOMGF) model has the best capture accuracy compared to the other FOGF models and traditional models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract6100561